
-A199 617 TWO PAPERS ON A SY Y -
SEMICONDUCTORS) CI (U) CARNEGIE-MELLON UNIV PITTSBUR
PA DEPT OF COMPUTER SCIENCE R E BRYANT DEC 87

UNCLASSIFIED CU-CS-87-106 RFUAL-TR-87-1167 F/G 12/2IIII

IEEllllEEllE
EIEEEEEEEIIIIE
EEEEEEEIIEIII
IIIEEIIEEIIIIE
hEII EEEEEIIEI

I..'..mmmm

- ------ - -

.IB

t I)TION TflT CHARI

PHOTOGRAPH THIS SHEET

..

(0 LEVEL INVENTORY

00
R:, Fa "j - 7 -141A

DOCUMENT IDENTIFICATION

... I L Dee /q'7
TkhW&Wb6 AIMt beft aproved
tWPOW M1 Md1Ift

DISTRIBUTION STATEMENT

((I SSW0N I OR

I \A t ,, 1,,,(D) T IC,,,,,..,,,,. I ELECTER
.ItJ Sill lAlO

________1__FEB 0 9 ~3

BY
. IS[3RIt 'ION

.AV.AILABILITY CODIFS
I1ST ,\AIL ANDOR SPFCIAL

DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETURNED

05 101

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RE fURN TO DTIC-DDAC

DTIC FORM 70A DOCUMENT~ l~l / PROC N SHEE PREVIOUS EDITION MAY BE USED UNT
DTIC FR83 70A STOCK IS EXHAUSTED.

AFWAL-TR-87- 1167

Y TWO PAPERS ON A SYMBOLIC ANALYZER FOR MOS CIRCUITS

R.E. Bryant

S Carnegie-Mellon University
Computer Science Department

Pittsburgh, PA 15213-3890

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHARD C. JONES

Project Enzineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI

Ch, Information Processing Technology Br

Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

Unclassified
' ECURr CLASSrCA7rON Or TW1 S PAGE

t ' IForm Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

la REPORT SECjRTY CLASSi;,CATiON lb RESTRICTivE MARKINGS

Unclassified

2a SECURiTY CLASS; !CATON AUTHORiTY 3 DISTR BuTON/AVAILABILTY OF REPORT

Approved for public release; distribution

2b DECzASS.-iCA ON DOW\GRADNG SC-IEDULE is unlimited.

4 PERFORMING ORGAN ZAON REPOR' NVMBER(S) S MONITORING ORGAN:ZAT!ON REPORT NUMBER(S)

CMU-CS-87-106 AFWAL-TR-87-1167

6a NAME OF PERFORMNG ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONiTORiNG ORGANiZATiON
Carnegie-Mellon University (if applicable) Air Force Wright Aeronautical LaboratoriesI AFWAL/AAAT-3

6c. ADDRESS 'Ciry. State, and ZIP Code) 70 ADDRESS (City, State. and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

Ba NAvE OP ;,)D,%G SPONSOR.NG r8b OF;ICE SYMBOL 9 PROC,REMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN.ZAT'ONj (If applicable) F33615-84-K-1520

8c ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
ELEMENT NO NO NO ACCESSION NO

61101E 4976 00 01

11 TITLE (include Security Classification)
Two Papers on a Symbolic Anal)zer for MOS Circuits

12 PERSONAL AUTH-4OR(S)
R. E. Bryant

S 13a TYPE OF REPORT '3b 7,ME COvERED 114 DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT
Interim FROM TO 1987 December 37

'6 SUPPLEMEN-ARY NOrA',ON

-7, COSAT, CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SJB-GROjP switch networks; symbolic analysis; MOS circuit analysis;
Gaussian elimination; series-parallel graphs; Boolean
manipulation

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

A network of switche3 controlled by Boolean variables can be represented as a sys-

tern of Boolean equations. The solution of this system gives a symbolic description

of the conducting paths in the network. Gaussian elimination provides an efficient

technique for solving sparse systems of Boolean equations. For the class of networks

that ,i,' when analyzing digital metal-oxide semiconductor (MOS) circuits, a simple

pivot selection rule guarantees that mot a switch networks encountered in practice

can be Folved with 0(s) operations. When represented by a directed acyclic graph,
the set of Boolean formulas generated by the analysis has total size bounded by the

number of operations required by the Gaussian elimination. This paper presents the

inntheniatical basis for systems of Boolean equations, their solution by Gaussian elimi-

nation, and data structures and algorithms for representing and manipulating Boolean

formulas.

20 DISTRIBUTION.AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
ED UNCLASSIFIEDIUNLIMITED C3 SAME AS RPT CJ DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHQE('Ilude AreaCode) 22c f C E V .S
Chahira M. Hopper (513 Af578b AFWLIAAT-

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

SUTIARY

This report contains two papers describing a set of algorithms to extract the logical
behavior of a digital metal-oxide semiconductor (MOS) from its transistor representation.
Switch-level network analysis, applied symbolically, performs the extraction. The analyzer
captures all aspects of switch-level networks including bidirectional transistors, stored
charge, different signal strengths, and Indeterminate (X) logic values. The output is a set
of Boolean formulas, where the behavior of each network node is represented by a pair of
formulas. In the worst case, the analysis of an n node network can yield a set of formulas
containing a total of 0(n) Boolean operations. However, all but a limited set of dense,
pass transistor networks give formulas with O(n) total operations.

The analyzer can serve as the basis of efficient programs for a variety of logic design
tasks, including: logic simulation (on both conventional and special purpose computers),
fault simulation, test generation, and symbolic verification.

These papers have been accepted for publication in IEEE Transactions on Computer-
Aided Design of Integrated Circuits.

M

Algorithmic Aspects of
Symbolic Switch Network Analysis*

Randal E. Bryant
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

February 5, 1987

Abstract

A network of switches controlled by Boolean variables can be represented as a sys-
tern of Boolean equations. The solution of this system gives a symbolic description
of the conducting paths in the network. Gaussian elimination provides an efficient
technique for solving sparse systems of Boolean equations. For the class of networks
that arise when analyzing digital metal-oxide semiconductor (MOS) circuits, a simple
pivot selection rule guarantees that most a switch networks encountered in practice
can be solved with 0(a) operations. When represented by a directed acyclic graph,
the set of Boolean formulas generated by the analysis has total size bounded by the
number of operations required by the Gaussian elimination. This paper presents the
mathematical basis for systems of Boolean equations, their solution by Gaussian elimi-
nation, and data structures and algorithms for representing and manipulating Boolean
formulas.
Keywords and phrasea: switch networks, symbolic analysis, MOS circuit analysis,

Gaussian elimination, series-parallel graphs, Boolean manipulation.

1 Introduction

The advent of metal-oxide semiconductor (MOS) circuit technology has revived interest in
analyzing networks of switches. This field originated when digital circuits were constructed
with electromechanical relays. Shannon, in the first application of Boolean algebra to dig-
ital systems, developed several techniques for analyzing a switch network symbolically[l].
For a network of switches, each of which is either open or closed depending on the value of

*This research was supported in part by the Defense Advanced Research Projects Agency, ARPA Order

Number 4976, and in part by the Semiconductor Research Corporation under Contract 86-01-068.

NA IJI1111ravilaww1

Symbolic Switch Network Analysis 2

some Boolean variable, the goal of symbolic analysis is to derive formulas expressing the
conditions under which conducting paths will exist between specified pairs of terminals.'

A MOS transistor can often be abstracted as a switch-it conditionally forms a con-
nection between its source and drain nodes depending on the voltage on its gate node.
Several models of static logic gates in MOS treat transistors as simple switches and define
the behavior of a gate in terms of the conditions under which a conducting path is formed
from the supply or ground to the gate output[2,3,4]. More complex MOS models take into
account such effects as resistance ratios, dynamic memory, and invalid or uninitialized logic
values[5,6]. A companion paper [7] shows that even with these more elaborate models, the
behavior of a MOS circuit can be determined by analyzing a series of switch networks.

Thus the symbolic analysis of switch networks remains as a key problem in deriving an
abstract representation of the function computed by a digital circuit.

The demands placed upon symbolic analysis have changed greatly since the days of relay
circuits. These circuits were relatively small, and the analysis was performed manually.
Under these conditions, the asymptotic performance oi the method matters less than its
conceptual simplicity. For example, Shannon describes a method that involves enumerating
every possible simple path between two terminals, forming the Boolean product of the
switch labels in each path, and then forming the Boolean sum of these path formulas. In
general, the number of simple paths in a network can grow exponentially with the number
of switches (e.g., the parity ladder shown in Figure 7.) Consequently, path analysis cannot
be applied to networki' of significant size. Furthermore, there was no concern about data
structures and algorithms for representing and manipulating Boolean formulas. Even more
recent methods based on matrix representations[8 do not address these algorithmic issues.

Today symbolic analysis methods are to be executed by computers on networks con-
taining thousands of switches. To implement an analyzer, every detail of representation
and algorithm must be specified. Success must be measured by worst or average case

9 complexity rather than by performance on small examples. Unfortunately, the state of
the art in symbolic analysis has not kept up with these demands. For example, most
published symbolic analysis methods for MOS circuits start by enumerating all possible
simple paths in the network[9,10,11]. A second method involves enumerating the possible
sets of connected components formed in the switch network for different values of the con-
trol variables [12]. This approach can also produce a description of size exponential in the
number of transistors. These accounts indicate little progress since Shannon's day.

In general, a MOS circuit can be partitioned into smaller subnetworks and each subnet-
work analyzed separately. Most of these subnetworks are small-containing no more than
10 transistors. Hence, one can argue that even an algorithm of exponential complexity can
work well in practice. However, subnetworks containing over 1000 transistors commonly
occur in large pass transistor and datapath circuits. A program for general use cannot
rely so heavily on a particular circuit style to achieve tolerable efficiency.

This paper proposes a far more exacting standard for symbolic analysis: that the size

'Shannon characterized a network by its "hindrance' function, with logic value 1 indicating the absence
of any path. This paper adopts the more conventional view of 1 indicating the presence of a path.

Symbolic Switch Network Analysis 3

of the symbolic description should be comparable to the size of the original network. That
is, a network of 3 switches should be represented by a set of formulas containing, in total,
O(s) Boolean operations. This paper shows how to achieve this goal for most networks
arising in the analysis of MOS circuits. Even for the dense pass transistor circuits that
lead to a nonlinear complexity, the method produces a description of size 0(8S3/2). This

performance results from a combination of several techniques:

* A network is represented by a system of Boolean equations. This system expresses the
effects of all paths in the network but lends itself to solution methods of polynomial
complexity.

e The system of equation is solved symbolically by Gaussian elimination. A simple
heuristic for selecting pivots guarantees that most practical networks of s switches
can be solved with O(s) algebraic operations.

* The set of Boolean formulas is represented by a directed acyclic graph (DAG), with
each DAG node specifying a Boolean operation to be applied to its children, and
with each leaf denoting a variable or constant. This representation naturally allows

.!- sharing of common subexpressions. The number of nodes in the DAG is bounded by
the number of algebraic operations required during Gaussian elimination.

* Expression simplification techniques are applied to the DAG but only in ways that
reduce the size of the DAG even further.

The algorithm presented is efficient in terms of execution speed as well as the size of the

result produced.

The formulation of the switch network analysis problem used in this paper is tailored
to the particular needs of the MOS circuit analysis method presented in the companion
paper. It differs from the classic formulation in the following respects:

" The control signals of switches can be arbitrary Boolean formulas, not just variables
or their complements.

* Switches are directed-the conduction conditions from one point to another can
Adiffer from those in the reverse direction.

" The analysis does not compute the conduction conditions between specified pairs
of terminals. Instead, each node is given an initial value represented by a Boolean
formula. A path is viewed as having an "effect" on its destination node equal to the
Boolean product of formulas representing the initial value on the source node and
the control signals of the switches. Symbolic analysis derives a formula for each node
describing the Boolean sum of the effects of all paths to the node.

" The analysis may need to characterize the absence rather than the presence of con-
ducting paths.

I V

Symbolic Switch Network Analysis 4

Each of these differences represents only a slight generalization of the original problem
without increasing its complexity. The requirement for directed switches may seem coun-
terintuitive given that MOS transistors are fully bidirectional devices. However, the MOS

*i analyzer accounts for signals of varying strength (representing different driving admit-
* tances) by assigning different labels to the two directed edges representing a transistor.

This paper presents some new results on the efficiency of Gaussian elimination for
solving systems of equations defined over general series-parallel graphs. Otherwise, it
contains little that has not been presented in some form elsewhere. However, material has
been drawn from a diversity of disciplines, including switching theory, graph theory and
algorithms, linear systems, optimizing compilers, and symbolic manipulation. In many
cases, ideas or techniques are applied in ways much different from those conceived by their
developers. Few practitioners in the field of computer-aided design are well versed in all of
these disciplines. Furthermore, other presentations of methods for solving path problems
in graphs have been in terms far more general, abstract, and harder to understand. The
main contribution of this paper is to synthesize a collection of ideas into a single framework
for solving an important problem.

Sections 2-4 present a mathematical description of the symbolic analysis problem in
terms of systems of equations defined over a Boolean algebra. It parallels previous work
on the symbolic analysis of contact networks [8], and more general algebraic formulations
of path problems [13,14,15,16]. The presentation differs from previous ones in several re-
spects. First, Boolean algebra is selected as the domain of interest. This gives properties
that more general presentations cannot assume, including a finite, partially ordered do-
main, and an idempotent sum operation. In addition, systems of equations are expressed
in terms of labeled graphs rather than with matrix algebras. Graphs more clearly capture
the sparse structure of the problem to be solved and directly map into data structures for
efficient algorithms. Section 5 describes how a system of Boolean equations can be solved
by Gaussian elimination. A combination of formal and empirical arguments shows that
most networks arising when analyzing MOS circuits can be solved with a linear number of
operations using a simple pivot selection rule. This result could prove useful for other cir-
cuit analysis programs such as circuit-level simulators. Section 6 describes data structures
and algorithms for representing and simplifying Boolean formulas. Section 7 presents an
example showing some strengths and weaknesses of the method, and Section 8 summarizes
the results.

2 Symbolic Algebra

Symbolic analysis derives formulas that express conditions under which conducting paths
are formed in a network of switches. Such formulas are concrete, syntactic representations
of Boolean functions. Several formulas may represent a single function. In mathematical
terms, the analyzer computes over a domain consisting of the set of all functions mapping
a set of p variables (describing the control signals on the switches) to the set {0, 1}, i.e.,

B = {f:{o,1}P--,{0,111

Symbolic Switch Network Analysis 5

In the Boolean algebi k of the analysis (B, A, V, -,O, 1) the operations A, V, and -' denote
',. *.\ Boolean AND, OR, and NOT, respectively, applied to functions. The distinguished elements

0 and I denote the constant functions that yield 0 and 1, respectively, for all argument
values. This process of abstracting from a primitive domain of Boolean values to one of
functions over these values forms the basis of symbolic analysis. Most algebraic properties
carry over from the original domain to the abstract one.

The Boolean product of the elements in a set A is denoted A.EA a. The product of an
empty set is defined to equal 1. Similarly, the Boolean sum of the elements in a set A is
denoted V4GA a. The sum of an empty set is defined to equal 0.

Elements of B are partially ordered as b < a when bVa = a, i.e., by their lattice ordering
[2,17]. This partial ordering obeys the following properties, as can easily be derived from
the laws of Boolean algebra:

. Proposition 1 For any b E A
-- : gb < Va

aEA

Proposition 2 If b > a for all a E A then

b > V a.
&EA

Proposition 3 If a < b, then -'b < -,a.

Proposition 4 b < a if and only if b A --a = O.

3 Systems of Boolean Equations

Just as a resistor network can be represented by a system of linear equations, so a switch
network can be represented by a system of equations in which V and A replace addition and
multiplication, respectively. This section develops the theory of such systems in terms of
labeled graphs and then shows how the switch network analysis problem can be formulated
in these terms. In this discussion, (V, E) is a finite, directed graph with vertices V and
edges E C V x V, where IVI = n.

:Definition 1 A vertex labeling x is an assignment z(v) E B to each vertex v E V.

Two vertex labelings x and y are partially ordered z < y when x(v) y(v) for all v E V.

Definition 2 An edge labeling A is an assignment A(u, v) E B fn each edge (u, v) E E.

Definition 3 A system of Boolean equations [A, b] consists of,,, edge labeling A and a
vertex labeling b.

Symbolic Switch Network Analysis

Definition 4 A vertex labeling x satisfies the system A, b when

x(v) = b(v) V V x(u) A A(u,v)
(u,v)EE

for every v E V.

Observe that unlike the usual formulation of systems of linear equations (Ax = b).

the unknown x appears on both the left and right hand side of Equation 1. In a matrix

notation, this equation would have the form x = b V Ax. This departure from convention

is forced by the fact that the domain has no inverses under V.

The following property follows directly from the above definition and Proposition 1

Proposition 5 If x satisfies a system [A, b], then x > b.

In general, many labelings can satisfy a system of equations. For example, any vertex

* labeling satisfies the system [I, z] defined over a graph with all edges of the form (v, v).
where I(v, v) equals 1 and z(v) equals 0 for all v. We focus our attention on a particular

- "one, considered the "solution" of the system.

Definition 5 Vertex labeling x is a solution of the system [A, b], when

1. it satisfies the system, and

2. x < y for any labeling y satisfying the system.

By this definition, a system can have at most one solution. In fact, we can show that any
system has exactly one solution.

Theorem 1 Any Boolean system [A, b] has a unique solution x given by the limit of the
sequence x', where x°(v) = 0 for all v, and x'(v) is defined for all i > 0 and all v as:

x'(v) = b(v) V V [x'-'(u) A A(u,v)]. (2)

A proof of this theorem is given in Appendix A, based on the following series of ar-
* guments. First, the sequence satisfies x' < x' +1 for all i and therefore converges. Second,

*the value to which the sequence converges satisfies the system. Finally, for any labeling y
satisfying the system, x' < y for all i. Therefore, the sequence converges to the minimum

labeling satisfying the system.
A system of Boolean equations defines a path problem as follows. Let P,, denote the

set of paths from vertex u to vertex v. A path contributes an "effect" to its destination
vertex equal to the Boolean product of labels on its source vertex and edges. The net

effect at a vertex is given by the Boolean sum of the effects of all paths having this vertex

as destination. The solution of a Boolean system yields the vertx labeling giving the net

effect at each vertex as is expressed in the following theorem.

Svmbolic Switch Network Analysis

Theorem 2 If x(v) is defined for all v E V as

S,)= V V [b(u) A A a(s,tj

UE PE...(8t)EP

then x i's the solution of the system [A,b].

A proof of this theorem is shown in Appendix A based on the following s,'.!-
arguments. First, x satisfies the system [A,b]. Second, for any path p to vertex ,

- any labeling y satisfying the system, the effect of path p is less than or equal !o Tj
Therefore, the combined effects of the paths to every vertex must equal the rni:'
labeling satisfying the system.

Theorem 2 shows how to formulate the classical switch network analysis probeif::.
one of solving a system of Boolean equations. For example, consider a switch network
a designated source terminal s. Let the graph (V,E) have the nodes of the networ
vertices, and have an edge (m, n) for each pair of nodes m and n connected by a switch I.,--
eogf labeling A(m, n) equal the Boolean sum of all signals controlling switches connecr l

nodes m and n. Define the vertex labeling b as b(s) = 1, and b(n) = 0 otherwise. The:,
the solution of the system [A, b[is a vertex labeling x where x(n) describes the conditior

- under which a conducting path will form from s to node n.

- -4 Dual Systems

Some applications require formulas expressing conditions for the absence of any cond uc, 1:.g
path between terminals of a switch network. Such formulas could be obtained by fir-
solving a system expressing conditions for the presence of paths and then complement.ig
the solution values. These negation operations, however, complicate the task of simplifying
the formulas. Alternatively, the formulas can be derived directly by solving a dual systern
in which the roles of V and A are interchanged. The mathematical basis for this technique
stems from DeMorgan's Laws.

Definition 6 A dual system of Boolean equations [A,bID consists of an edge labeling A
and a vertex labeling b.

Definition 7 Vertex labeling x satisfies the dual system [A,b]D when

x(v) = b(v) A A [x(u) V A(u,v)]
(u,V)EE

for every v E V.

As before, only one vertex labeling is considered to solve a dual system, but this time
the maximum one is selected.

Definition 8 Vertex labeling x is a solution of the dual system [A,b]D, when

04

*-- I I

Symbolic Switch Network Analysis

1. It satisfies the system, and

2. z > y for any labeling y satisfying the system.

Definition 9 The complement of vertex labeling b, denoted 6, is a vertex labeling with

5(v) = -'b(v) for all v E V.

Definition 10 The complement of edge labeling A, denoted X, is an edge labeling with
X(u, v) = -'A(u, v) for all (u, v) E E.

Theorem 3 z is the solution of the system A,bl if and only ifY is the solution of ,
dual system [;A, V.

41

The proof of this theorem is given in Appendix A It involves a -traightforwaro t,;,

*.-', cation of DeMorgan's Laws.
"'" From this theorem, the role of dual systems in expressing the absentc of p;atii' .e,,

clear.

Corollary 1 If x is the solution of the dual y stem t h en

%*V 1WP.. .

5 Equation Solution

The equations of the preceding section g,' a:

function. Symbolic analysis derives ex;i,, "

following presentation describes the scxUit,ui; ., .--&

similarly by interchanging the roles of ani *. - ,

As Equation 2 suggests, a simple. tera:te :.r'. *. ..

Although this method lacks efficiency. .t aiui :s,:',-. £ * * ",

Starting with x(v) = b(v) for each vertext * "he terat 0 :1.. 4 :.

a vertex v through an edge (vu) to the adjacent -ertexl . 4.o ,r, . a 't

the value already on vertex u. That is. eac h step n % vos a , mnp 14 t at " '-

z ,(u) -- z(u) . z(t, 4,t u-

Ultimately, this process converges to a solution. However an iterative .n'letrll :Yisft , :'.-

test the solution for convergence, i.e., that x(v) ' A4(v,u .- ziur for all :,'u, -u . ,r .

must perform enough iteration steps to guarantee that for every simple path in the graph.

the value on the source vertex has been propagated th . gh the edges of the path to

the destination vertex. The first method requires solvinK -ie NP-hard problem of testing

Boolean formulas for equivalence [18], while the second r, .. ire* 0(V E) steps, except

for restricted graph structures [191.

2,

.Symbolic Switch Network Analysis

{ Forward elimination }
V0 V V; { The uneliminated vertices }
Eo E; { The original edges plus fill-in's}
fori +- ltondo
begin

choose vertex from Vj- 1 and call it vj; { Select pivot }~v .- V_ - {Vl;
E, +- E,_ n [V x V];

for each v E V such that (vi,v) E E- I do
begin

b(v) +- b(v) V [b(v,) A A(v,,v)
for each u E V such that (u, vi) E Ei- and u $ v do
begin

if (u, v) E E,
then A(u,v) +- A(u,v) V [A(u, ,) A A(v,,v)]
else begin

(Create fill-in edge. }
E, .- £,u {(u, v)};
A(uv) -- A(u,v,) A A(v,v)

end
end

end
end;

{ Back Substitution }
fort - nstep-Itoldo

* begin-[."z(v,) 4- b(v,);

for each u E V such that (u, vi) E Ej- 1 do
z(v,) 4- z(v,) V [z(u) A A(u, v,);

end

Figure 1: Gaussian Elimination Algorithm. The code differs from the conventional
presentation in that it uses graph notation and substitutes Boolean for numerical opera-
tions.

*I

04,

Symbolic Switch Network Analysis 10

5.1 Gaussian Elimination

Gaussian elimination provides the most efficient known method for solving sparse
Boolean systems, where Boolean operations replace the real arithmetic used when solving
linear systems [13,20]. Figure 1 shows a sketch of the Gaussian elimination algorithm.
The code has two parts: forward elimination and back substitution. Forward elimination
successively modifies the system structure, each time eliminating a vertex and all inci-
dent edges, and possibly adding edges between some remaining vertices. These structural
modifications give Gaussian elimination its performance advantage over iterative methods.

Eliminating a vertex vi (termed the "pivot") involves updating the value of b(v) for each
uneliminated neighbor v of vi. Then for each pair of uneliminated neighbors u and v, the
value of A(u, v) is updated. This may require adding a new "fill-in" edge to the graph if

(u, v) does not already exist. During back substitution, the vertices are processed in the
reverse of their elimination ordering. For each vertex vi, the value of z(v,) is computed in
terms of b(v,) and the value of z(u) for every neighboring vertex u eliminated after v,.

The code of Figure 1 also defines some notation to assist the proof of correctness and
the performance analysis. To summarize, the vertices of V are labeled v1,..., v, in the

,%* order they are eliminated. The set Vi C V is defined as the set of all vertices eliminated
-. after vi. The set E is defined as the set of all edges (both original and fill-in) connecting

vertices in V. In the actual implementation, little of this information need be stored

explicitly. Edges can be represented by adjacency lists with fill-in edges appended to the
*, lists. A stack can keep track of the elimination ordering for use in back substitution. The

set of uneliminated vertices can be represented by a priority data structure to implement

the desired pivot selection rule.

Theorem 4 The Gaussian elimination algorithm of Figure 1 solves the system [A, b].

A proof of this theorem is given in Appendix A. It involves showing that the elimination
of a vertex does not change the solution for the remaining vertices. The final system
involves only one vertex and is solved trivially. Each back substitution step then adds
back a vertex, computing its solution in terms of those for the other vertices.

5.2 Pivot Selection

The efficiency of Gaussian elimination depends largely on the number of uneliminated
neighbors each vertex has as it is eliminated. Consider a graph with n vertices. Assume for
simplicity that the graph is structurally symmetric, that is (u, v) E E whenever (v, u) E E.
This requirement can be met by adding edges to the graph with labels equal to 0.2 With
this simplification, an undirected graph describes the structure of the system to be solved.
Referring to Figure 1, define the elimination degree of vertex v, denoted d(v), as

d(v,) = {tU E VIEu,v,) E i

21n fact such edges are often added to simplify the data structures, as it eliminates the need to store

explicit pointers in the reverse direction of the edges.

wal=
E l

Symbolic Switch Network Analysis 11

Figure 2: Star Graph Example. The elimination complexity of this class of graphs
ranges between linear and cubic, depending on the elimination ordering.

The number of algebraic operations (A and v) for elimination is at most

2 E [d(vi)+d(vj)2].
1<i<n

This formula is highly sensitive to the values of d(v). For example, if the degrees are all
bounded by a constant, then only 0(n) operations are required. On the other hand, in
the worst case d(v,) can equal IV4l for all vertices and 0(n-) operations are required.

The vertex elimination degrees depend greatly on the elimination order. Consider, for
example a "star" graph, such as the one shown in Figure 2. If the center vertex is eliminated
first, fill-in edges are added between every pair of remaining remaining vertices, and the
algorithm requires 0(n') operations. If, on the hand, this vertex is eliminated last, we
would have d(v) < 1 for all v, requiring only 0(n) operations.

Much has been written on strategies for choosing elimination orderings, including both
empirical [21,221 and theoretical [23] results. In general, the problem of selecting an
optimal ordering is NP-complete [18]. However, we would be satisfied with a "good", but
not necessarily optimal, ordering, and we can exploit properties of the graphs that arise
in MOS circuit analysis.

The following heuristic strategy is often cited [21,22] for deciding which vertex to select
as the next pivot during Gaussian elimination:

Rule M: Choose a vertex that minimizes d(v).

This rule is an example of a "greedy" strategy. That is, it selects a pivot to minimize
the computational effort of the next step without regard to future eliminations. For MOS
circuits, this strategy works quite well-with only a few exceptions the resulting elimination
requires only 0(n) operations. A MOS circuit maps into a "channel graph" for symbolic
analysis[7]. This graph contains a vertex for each storage (i.e., non-input) node n, and
an edge (m, n) for each pair of storage nodes m, n forming the source and drain of a
transistor. In general, this graph will contain many components, and each component is
analyzed separately.

Most channel graphs describing digital MOS circuits fall into a restricted class that we
shall term "general series-parallel" (GSP). This class extends conventional series-parallel

Wky

Symbolic Switch Network Analysis 12

Acyclic Branch Series Parallel-Series
V 4

V V

V 0 V0-6 W WI 41w it JW

Figure 3: General Series-Parallel Production Rules. Any GSP graph can be gener-
ated by starting with a single vertex and applying a sequence of these rules.

.4

Figure 4: Channel Graph for Complex nMOS Gate. Even though the gate has a
bridge in its pulldown network, the graph is general series-parallel.

Symbolic Switch Network Analysis 13

a,

Original Redrawn

b4 b4

as b3 as A -bs

a2 X a2

a1 bo bo

Figure 5: Channel Graph for Shift Network. Redrawing it shows the general se-
ries-parallel structure more clearly.

Figure 6: Channel Graph for Section of Carry Chain. Although not GSP, no vertex
has elimination greater greater than 3.

Figure 7: Channel Graph for Parity Ladder. Although not GSP, no vertex has
elimination degree greater than 3.a ,+. , p+,,, + .:.+ . ' I +"+ ' + " + ' + "

- . .-% ~ r

%Symbolic Switch Network Anlyi 14

.. ,

4.." .

74

*Figure 8: Channel Graph for Tally Circuit. This class of graphs has 0(n 2) elimination
, complexity when pivots are selected by Rule M.

4.

.-..

p.°

4.

'.

'CFgr."C anlGahfr arlSile.Ti ls o rpshsOn) eiia

.1*incmpeiyr*rde fpvo eune

'p. - iiii ii nill lllI l'l

Symbolic Switch Network Analysis 15

graphs[24] to include those containing acyclic branches. GSP graphs can be defined in-
ductively starting with a single vertex as the basis, and applying the production rules
illustrated in Figure 3. That is, given a GSP graph containing a vertex v, a new vertex
w and edge (v, w) can be added to give a new GSP graph. Similarly, given a GSP graph

. containing vertices u and v and edge (u, v), a new vertex w along with edges (v, w) and
(u, w) can be added. The edge (u, v) is either deleted for the Series production rule or
retained for the Parallel-Series rule. We do not define a pure Parallel rule to avoid creating
multigraphs. It can easily be seen that this class of graphs has significance for MOS cir-
cuits. Most MOS circuits involve transistors connected series-parallel to implement logic

*, functions and acyclically to implement information transfer.
Figures 4 and 5 show examples of GSP channel graphs. Figure 4 is typical of those that

arise when analyzing complex nMOS logic gates with connected pass transistors. Note that
the graph contains no edge corresponding to the pullup transistor, since this transistor is
connected directly to an input node. The pulldown network contains a "bridge", and hence

many would not consider this a series-parallel graph. Most presentations of series-parallel
networks assume a "virtual edge" between the top and bottom terminals (to represent the
power supply.) Switch graphs need not include such an edge, and hence the channel graph
is GSP. CMOS logic gates usually have GSP channel graphs as well. Figure 5 is typical of
those that arise when analyzing pass transistor shift networks. This network transfers a
set of inputs on the left to the outputs on the right shifted either -1, 0, or 1 positions. As
normally drawn, the graph appears quite complex. However, it can be redrawn as shown

. on the right, making it easier to see the GSP structure. Experience has shown that many
seemingly complex circuits have simple channel graphs.

Theorem 5 A itystern of equations defined on a graph can be solved by Gaussian elimi-
nation such that no vertex has elimination degree greater than 2 if and only if the graph is
general series-parallel.

A proof of this theorem is given in Appendix A. It follows from the observation that
the production rules of Figure 3 and the graph transformations caused by eliminating a
vertex of degree less than or equal to 2 are inverses of each other. Our application requires
only the "if" part of the theorem. The "only ifr part is included for intellectual interest.
It shows that only GSP graphs satisfy this bound on the maximum elimination degree.

Corollary 2 Gaussian elimination applied to an n vertex GSP graph with pivots selected
* by Rule M requires at most 12n algebraic operations.

An n vertex GSP graph must have between n - 1 and 2n - 1 edges. Hence, this
result shows that an the analysis of an a switch network requires 0(s) operations when
the network has a GSP structure.

A survey of 4 books on VLSI [25,26,27,28], plus a direct analysis of many circuit designs
has uncovered only a handful of non-GSP channel graphs, as illustrated in Figures 6, 7, 8
and 9. Figure 6 shows the graph for a section of the carry chain circuit from the MIPS-X
processor [29]. Even when repeated for a number of stages, systems with this graph have

-6

Symbolic Switch Network Analysis 16

linear elimination complexity, because no vertex has elimination degree greater than 3.
The same holds for pass transistor parity ladders based on a well known relay contact
network [1], as illustrated in Figure 7. In contrast, path enumeration over this graph
gives a result of exponential complexity, while iterative methods have quadratic worst case
complexity. Graphs that arise when a circuit is created by repeating a structure in one
dimension generally have some constant upper bound on elimination degree and hence
linear elimination complexity.

The Tally network of Mead and Conway [25], with graph illustrated in Figure 8 does
not yield such favorable results. This network has the lower triangle of a square mesh as
its channel graph. For such meshes, informal experiments indicate that selecting pivots
by Rule M gives quadratic complexity. For a planar graph such as this, pivot selection by
nested dissection can solve an s switch system with O(s3 / 2) operations [23]. In practice,
however, only small versions of this circuit are used, or restoring buffers are inserted for
performance reasons. Either case yields small channel graphs, and Rule M handles small
graphs well. For example, the four input tally circuit shown in the figure has maximum
elimination degree 3.

A variety of pass transistor shift networks yield non-GSP channel graphs. A barrel
shifter as shown in Figure 9 provides the most extreme case. The channel graph for
this circuit is a complete bipartite graph. For solving such a dense system O(ns) oper-
ations are required for any elimination ordering. Given that the number of switches s
grows quadratically with the number of nodes, however, the elimination complexity is a

respectable 0(s3/2).

Other shift networks have complexity between those of Figures 5 and 9. For exam-
ple, the Caltech Mosaic processor [30] has a network that passes the data either straight
through, shifted 1 position, or shifted 4 positions, where shifts are circular. When follow-
ing Rule M, experiments indicate that the elimination degree never exceeds 12 for such
a graph, regardless of the shifter width. Although this bound yields a solution of linear
complexity, the constant of proportionality becomes noticeably high. Fortunately, shift
networks constitute only a small fraction of the total circuitry in a full scale VLSI chip.
Even subnetworks with 0(n-) elimination complexity should have little impact on the to-
tal result. Furthermore, this polynomial worst case complexity compares favorably to the

* gexponential complexity of other methods.

As an aside, this analysis shows that Gaussian elimination would provide an efficient
method for computing node voltages in a linear switch simulator such as RSIM [11]. On
the other hand, the results do not carry over as well to circuiit simulators such as SPICE
[22j. When an implicit integration method is used in a circuil simulator, a conductance
is inserted across the terminals of each capacitor. This effectively creates a connection
between the gate, source, and drain of every MOS transistor The resulting graphs can
have far more complex structure than channel graphs.

i Mie

Symbolic Switch Network Analysis 17

-(a A b) (a A b) v (b v O)

-,V

A V

a b 0o

Figure 10: DAG Representation of Two Formulas. The leaves denote variables and
constants, while the nodes denote Boolean operations. A formula is denoted by a pointer
to a node.

6 Boolean Formula Representation and Manipulation

Up to this point, the presentation has intentionally remained vague as to how Boolean
formulas are represented and manipulated. In fact, there are many possible representations
offering a wide range of capabilities and limitations. As has been shown, most networks
arising in MOS circuit analysis require a linear number of algebraic operations to analyze.
Ideally, the Boolean formulas should be represented in such a way that the total size of the
formulas for a network preserves this linear growth. A directed acyclic graph representation
satisfies this requirement.

6.1 DAG Representation of Formulas

A directed acyclic graph (DAG) [31,32] resembles a parse tree, with leaves representing

eeither variables or constants, and with internal nodes representing Boolean operations. In
*@ a DAG, however, a given subgraph may be shared by several branches, yielding a more

compact representation. During the analysis of a switch network, the program constructs
a single DAG having multiple roots. A formula is indicated by a pointer to some DAG
node, where the formula denoted consists of the node and all of its descendants. Figure
10 shows a DAG representing two formulas.

During Gaussian Elimination, the program can perform an operation symbolically by
simply adding a new node to the DAG with branches to the nodes representing the argu-
ments. As observed by Tarjan [20], the DAG produced by this method can grow no larger
than the total number of algebraic operations.

6.2 Formula Simplification

As the example of Figure 10 shows, formulas can often be simplified by applying laws of
Boolean algebra. Fortunately, the DAG representation forms an ideal data structure for

Symbolic Switch Network Analysis 18

performing these simplifications and for detecting and eliminating common subexpressions
[31]. In general, the problem of reducing a formula to its simplest form is NP-hard (proving
tautology involves proving that a formula can be simplified to 1). However, a large class
of simplifications can be expressed in terms of local transformation on the DAG, where
no transformation increases the number of nodes. This paper presents only transforma-
tions appropriate for the formulas generated by switch network analysis. In particular, it
includes only a limited set of negation rules, because negation can only occur within the
control formulas for the switches.

The program can readily apply simplifying transformations each time an operation is
requested. That is, if some operation op (either A, V, or -') is to be applied to a list of
arguments A, the procedure applies transformations to produce a new list A', possibly
changing the operation to op' as well. Then the procedure checks a symbol table (e.g., a
hash table) to see if a node with this operation and with these arguments already exists.
If not it creates a new node and stores a pointer to it in the symbol table. This method
avoids ever creating duplicate subexpressions.

6.3 Simplification Rules

This presentation utilizes the following node representation. Associated with each node
is a type E {AV, --,,0,1, var}. Types A, V, and -, represent operations. Types 0 and
I represent constants, while type var represents a variable. Associated with a node x
for which type(z) E {A, v, or -,I is a list of arguments Args(z). Although the list is
not technically a set (because it is ordered and contains duplicates), set notation is used
to denote list operations. The set of all nodes is assumed totally ordered, as can be
implemented by assigning a unique integer identifier to each node and ordering nodes by
their identifiers. This total ordering serves only to permit a canonical listing of all children
of a node.

The steps below outline a procedure to apply operation V to a list of arguments A,
where each argument is specified by a DAG node. The steps to apply A are similar,
interchanging the roles of A and V, as well as those of 0 and 1. Each step indicates
an algebraic identity and an associated set of transformations. The steps are ordered in
such a way that the procedure need only sequence through the list once to implement the
operation.

1. Associativity: (a V b) V c = a V (b V c)
For each z E A such that type(z) = v, remove z from A and add Args(z) to A. This
transformation guarantees that no node in the DAG will ever have a child of the
same type. This transformation may or may not be desirable as is discussed below.

2. Coinmutativity: a V b = b V a
Sort the elements of A. This transformation guarantees that all nodes in the DAG
will list their children in the same order.

Symbolic Switch Network Analysis 19

3. Idempotency: a V a = a
Remove any duplicate entries from A. Since the elements of A are sorted, duplicates
must appear consecutively.

4. Identity: aV0=a
Remove from A any element z such that type(z) = 0.

5. Annihilator: a V I = 1
If A contains any element z such that type(z) = 1, then return z as the result of the

evaluation.

6. Excluded Middle: a V -,a = 1
, If A contains elements x and y such that type(x) = -' and y E Args(x), then return

a node of type 1 as the result of the evaluation.

7. Redundancy: b<a =€, bva=a.
For each z E A, label z with 1 and every y E A - {x} with 0. If a search with

these labels leads to a contradiction, then remove z from A. The search procedure
is described in detail below.

8. Degenerate Cases: V({b) a = b, V.0 a = 0

(a) If A contains only a single element x, then return z as the result of the evalua-
tion.

(b) If A is empty, then return a node of type 0 as the result of the evaluation.

9. Common Subexpressions
Look in the symbol table for an entry with key (v, A).

(a) If an entry is found, then return it as the result of the evaluation.

(b) If no entry is found, then create a new node z with type(z) = V and Args(x) =

* A. Add an entry for z to the symbol table with key (v, A). Return x.

By this method, we guarantee that duplicate nodes are never created.

6.4 Discussion of Transformations

Observe that this list of transformations does not include any for the two distributive laws:

(avb)Ac = (aVc)A(bVc)
"- (aAb)Vc = (aAc)V(bAc).

If we were to apply transformations that distribute one operation over the other, the size

of the DAG would be increased. The DAG could even grow to exponential size, if for
- example, distributivity were applied to transform the formula into sum-of-products form.

- On the other hand, we could attempt to recognize opportunities to factor expressions.

Symbolic Switch Network Analysis 20

However, expressions such as (a A b) V (b A c) V (a Ac) can be factored in more than one way,
giving different degrees of simplification. Thus, the manipulator ignores the distributive
laws altogether.

The associativity transformation (step 1) does not increase the number of nodes in
the DAG, and hence incurs no added complexity under a node cost model, where the
complexity of a DAG is expressed as the total number of nodes. However, it can create
nodes with more children than the number of arguments in the original list. For example,
the evaluation sequence

z - aAb
y 4-xAc

z 4- yAd

would create 3 nodes having 2, 3, and 4 children, respectively. The binary cost model
expresses the DAG complexity as the sum of its node costs, where a node with n children
has cost n - 1. This measure corresponds to the number of binary operations required to
evaluate the resulting expression. Under this cost model, the associativity transformation
can increase the complexity. The above example would yield a DAG of binary cost 6,
whereas omitting the transformation would yield a DAG of cost 3.

The associativity transformation also interacts with the redundancy transformation
(step 7), described in detail later. This transformation requires a search of the DAG for
each element of the list A, incurring a significant computational effort. The associativity
transformation can expand this list and, consequently, the number of searches.

. Of course, omitting this transformation causes the manipulator to overlook some useful
e.. simplifications. It will fail to recognize the equivalence of some expressions. Furthermore,

it will fail to eliminate some redundancies that would otherwise be found. For example,
consider the DAG for the expression a V [c V (a A b)]. The associativity transformation

p would create a list of arguments a, c, and aAb. The redundancy transformation would then
eliminate the third argument, yielding a simplified expression a V c. On the other hand,
no simplification would occur if the associativity transformation were omitted, because
neither the expression a nor c V (a A b) is redundant with respect to the other.

*The choice of whether or not to apply the associativity transformation depends on the
nature of the formulas generated and the appropriate complexity measure for the D AG.
Our experiments with a symbolic MOS circuit analyzer clearly indicate that, under the
binary cost model, the associativity transformation increases the DAG complexity by a

'factor of at least 2 for almost all circuits. Furthermore, depending on the particular circuit,
it can greatly increase the amount of CPU time spent searching for redundancies. However,
omitting the transformation yields formulas with a noticeable number of redundant terms.
Hence the desirability of the transformation depends on the intended application of the
symbolic analyzer output.

6.5 Redundancy Testing

The redundancy test mentioned in step 7 has proved important when simplifying the
formulas arising during MOS circuit analysis. Due to the way the program analyzes a

a " - " ' . '. " ' . " % % % " " 't

Symbolic Switch Network Analysis1

C1 C2 C3 C4 C5 C6

0 1 1 0 0 1

i

1 1 0 0 0 1 0 1

. Figure 11: Contradiction Rules for Redundancy Test. The search terminates suc-
cessfully when one of these labelings arises.

MOS network by solving a series of switch networks, it would otherwise construct complex
formulas containing many redundancies. Methods for discovering redundancy range widely
in their completeness and efficiency. On one extreme, a method that reliably detects any

O case where 2 formulas are ordered x < y can solve the NP-hard equivalence problem. That
is, two formulas are equivalent if and only if both x < y and y _< x. On the other extreme,
simple graph transformations can apply the simple absorption rule aV (aAb) = a. Simple
approaches, however, miss many opportunities for simplification.

The method discussed below strikes a compromise between efficiency and completeness.
It applies a search technique that attempts to prove that an argument is redundant but
applies tight controls to avoid combinatorial complexity.

Proposition 4 states that two Boolean formulas are ordered x < y if and only if no
assignment of l's and O's to the variables can cause x to evaluate to 1, while y evaluates
to 0. The redundancy test attempts to prove this property by contradiction, in a manner
reminiscent of an automatic theorem prover based on the Resolution Principle [33]. That is,
it assigns value 1 to x, 0 to y, and determines the logical consequences of these assignments.

* .: If it reaches a contradiction, then the formulas are ordered, otherwise they are assumed
unordered. The manipulator applies this test to each argument x in the list A in an attempt
to drop the argument from the list. That.is, for an V (respectively, A) operation, the test
searches for a contradiction with x assigned value 1 (resp., 0) and all other arguments
assigned 0 (resp., 1).

The redundancy test requires augmenting the DAG data structure with an additional
value field for each node, set to either 0, 1, or X (indicating an unknown value). Initially,

"0; the nodes in argument list A are set to 0 or 1 specifying the proof goal, while the other
nodes are set to X. Each node also has a list of pointers to its parents in the DAG. The
program searches for a contradiction in a manner similar to the implication step of the
D-algorithm used in test generation [34]. A queue, initialized with the nodes in argument
list A plus their parents, holds nodes that are candidates for further inferences. Boolean
values are propagated through the DAG by repeatedly removing a vertex from the queue
and applying inference rules that may change the node value or that of one or more child.
If a node value changes the program adds either its children or parents to the queue
as candidates for further inferences. This process continues until either a contradictory

04

-, J F:.._:... '..

Symbolic Switch Network Analysis 22

F1 F2 F3 F4 F5 F6
1* 0* 0* 1* 0* 1*

1 1 0 0 0 1 1 0

Figure 12: Forward Inference Rules for Redundancy Test. These rules change the
value of a node based on those of its children. Asterisks mark the values changed from X
to 0 or 1.

B1 B2 B3 B4 B5 B6
1 0 0 1 0 1

1* 0* 1 1 0* 0 0 * 1* 0*

Figure 13: Backward Inference Rules for Redundancy Test. These rules change

the value of a child based on those of its parent and siblings. Asterisks mark the values
changed from X to 0 or 1.

6J

Symbolic Switch Network Analysis 23

labeling is encountered (success), or the queue becomes empty (failure).

Figure 11 illustrates the set of contradictory labelings that cause the search to terminate
successfully. In this figure, the label above the node indicates the value associated with
the node, while the labels below indicate the values associated with the children. Note
that rules C1 and C2 require all children to have a particular value, while rules C3 and
04 require only a single child with the specified value.

Figures 12 and 13 present the set of inference rules by which Boolean values are propa-
gated through the DAG. For each rule, an asterisk indicates the value changed by the rule
from X to 0 or 1. Figure 12 illustrates the set of forward inference rules, i.e., those that
cause the value of a node to change based on the values of its children. For example, rule
F1 indicates that if all children of an A node have value 1, then it too must have value 1.
Rule F3 indicates that if an A node has any child with value 0, then it must have value 0.
Successful application of a forward inference rule to a node causes queueing of any parent
not already in the queue.

Figure 13 illustrates the set of backward inference rules, i.e., those that cause the value
of one or more child to change based on the value of the node and possibly the values of
the other children. For example, rule B1 indicates that if an A node has value 1, then
every child must have value 1. Rule B3 indicates that if an A node has value 0 and all but
one child have value 1, the remaining child must have value 0. Successful application of a
backward inference rule to a node causes queuing of any ch;Id whose value changes and is
not already on the queue. Any other parent of a child whose value changes is also queued,
unless it is already in the queue.

Figure 14 shows an example of how the redundancy test can prove that two formulas
z and y are ordered z < y. This example was adapted from one that can actually occur
during the symbolic analysis of a MOS circuit, demonstrating the need for a sophisticated
redundancy test. The figure does not show the descendants of the nodes labeled with op-
eration op, as they are not required to prove redundancy. This example arises when a back
substitution step of Gaussian elimination requires an evaluation of the form y -- z v y.
As a result of the successful redundancy test, formula y remains unchanged, yielding a
significant simplification. For purpose of discussion, each node is labeled with an identi-
fying letter to its left. The initial values assigned to the nodes are shown to their right.
The queue initially contains nodes a, d, and c. The search proceeds by the series of steps
shown in Table 1. It terminates once a conflicting labeling is found at node e.

The following analysis of the search algorithm shows that it has linear complexity, as
measured in the total number of branches in the DAG. The search only queues a node

1i when the value on the node, one of its parents, or one of its children changes from X
to 0 or 1. Each branch in the DAG can cause the nodes on either end to be queued at
most once. Therefore, the total number of queuing operations cannot exceed twice the
number of branches in the DAG. The set of inference rules can be applied to a node in
constant time, if counts are maintained for each node specifying the number of children
with value 0, 1, and X. Hence the algorithm has time complexit% linear in the DAG size.
Furthermore, the constant of proportionality is quite small.

'mlt

Symbolic Switch Network Analysis 24

a 1

A

b f X

A o

%-.

O"O

Figure 14: Redundancy Search Example. The search proves that formula z is redun-
dant with respect to formula y. Nodes are labeled by their values at the start of search
and by letters for discussion in the text.

Step Node Rule Changed Nodes New Value Queued Nodes
1. a B1 b, h 1 b, h
2. d B2 9, f 0 e, f
3. c F3 c 0
4. b B4 g 1 g
5. h none
6. a C1

Table 1: Inference Sequence for Redundancy Search Example. The search finds a
contradiction at node e.

However, since the search must be initiated once for each argument every time a
Boolean operation is performed, the total time spent searching for redundancies can be-
come quite large. Our implementation controls the time spent searching in 2 ways. First,
the search need only consider nodes that are descendants of the nodes in the argument

Symbolic Switch Network Analysis 25

Graph Initial Labelings
a 1

a b

'67d e

b 0

Ai Figure 15: Example System of Equations.

*" list A. The program avoids visiting extraneous nodes by keeping the value fields of the
nodes initialized to a special value indicating "unreachable." Before a search begins, the

program traces all descendants of the nodes in A and sets their values to X. The search
then only visits nodes with values X, 0, or 1, and upon termination resets all nodes to
"unreachable". This constraint will not reduce the success rate of the search. Second, the
search proceeds in breadth-first order (by using a first-in, first-out queueing discipline),

. and can be constrained to give up once it reaches a specified depth. This constraint reduces
the success rate of the search, but eliminates cases requiring extensive search having little
chance of success. With appropriate constraint, experience indicates that this approach to

redundancy testing yields significant simplifications for a reasonable computational effort.
It must be emphasized, however, that the redundancy test is not complete. For ex-

ample, it will recognize that a A (b V d) is redundant with respect to (a A b) V (a A d),
but not vice-versa, even though the two expressions are equivalent. The algorithm could
be extended to one that detects all redundant cases by adding combinatorial search and

q backtracking. However, this could greatly increase the computational effort, especially
considering that in most cases the redundancy test will fail.

.7 Symbolic Analysis Example

As with many algorithms designed for computer implementation, this analysis method
is very tedious to execute by hand. For systems of significant size, the DAG becomes far
to large to draw. Small systems, on the other hand, lend well to exhaustive path analysis.
Hence it is hard to demonstrate the advantages of our method with an example. With
these limitations in mind, several useful insights can be gained from a simple example.

Figure 15 shows the graph corresponding to a bridge network with source terminal a.
In this example, the edge labeling is symmetric: A(u, v) = A(v, u), and hence the system
structure can be represented by an undirected graph. The steps of Gaussian elimination

.,-P

Symbolic Switch Network Analysis 26

- Eliminate a Eliminate 6 Eliminate /3
!. a o v c ab V c v dea abVac b a• d b bVacVade'

d e

0

'N

Figure 16: Elimination Steps for Example System.

preserve this symmetry, and a straightforward modification of the elimination code reduces
the number of operations by almost a factor of 2. Figure 16 shows the sequence of labelings
produced by the successive elimination steps. For readability, the Boolean formulas were
simplified by hand and are shown without A symbols. The back substitution steps yield:

ze() = bVacVade
z(6) = aVbcvbde
z(b) = ad V bcd v be v ace
z(a) = I

Figure 17 shows the complete DAG produced in analyzing this system. For readability,
the branches to nodes representing variables are indicated by the variable names. This
DAG looks very complex, and it is difficult to verify that it correctly characterizes the net-
work. Observe, however, that this representation of the formulas involves only 10 Boolean
operations. The formulas derived by hand simplification appear much more readable, but
they require a total of 11 Boolean operations. Furthermore, under the binary cost model,
(a better measure of the evaluation cost for a set of formulas), the DAG has cost 11,
whereas a straightforward implementation of the hand-derived formulas has cost 19. Only

0 with considerable effort can the hand-derived formulas be transformed into ones involving
a total of 11 binary operations. This example shows that our method produces results
that are very compact although difficult for humans to read. Compactness counts more
for results that are used by other computer programs.

0

8 Conclusion

This paper has shown that a careful choice of algorithm and data structures yields a far
more efficient solution than does a naive approach. Furthermore, by casting the problem
in terms of systems of equations, the wealth of knowledge that has accumulated about
solving linear systems could be applied.

The symbolic analysis technique described in this paper has a wide range of applications
beyond switch networks. Direct methods such as Gaussian elimination are examples of

Symbolic Switch Network Analysis 27

-(6)

"' V

A

d
V

a

A A

-(-y

a~a
VV

"a V

C

A A

a b d e

Figure 17: DAG Produced in Analyzing Example Network. Although appearing
more complex than the formulas derived by hand, the DAG representation is actually more
compact.

obliious algorithms. That is, the control sequence depends only on the graph structure
of the system to be solved and not on the data values.3 In contrast, iterative methods
perform data-dependent branches when testing for convergence or when deciding which
vertex to update next. Any oblivious algorithm can be executed symbolically to yield some
explicit representation (e.g., a DAG) of the output generated by the program for all possible

3 Although data-dependent pivoting may be required when solving linear systems for numerical reasons.

Symbolic Switch Network Analysis 28

input data. Such a preprocessing step can yield a significant performance advantage in
applications that must evaluate many systems sharing a common structure but differing
in data values. Furthermore, the representation generated by symbolic analysis can be
executed by hardware that supports only the operations of the underlying algebra, rather
than general purpose computation. Hardware that supports only restricted domains such
as Boolean operations can achieve very high performance at a reasonable cost. Problems
that can be solved by Gaussian elimination and hence are amenable to symbolic analysis
include: linear systems, shortest path calculations, bottleneck flow path calculations, and
conversion of finite automata to regular expressions [16].

Solving path problems by Gaussian elimination becomes especially attractive as corn-
.. puters with parallel processing capabilities become available. The "greedy" pivot selection
, ',rule presented here gives very good results in terms of the total size of the formulas. If the

results are to be executed on machines that support high degrees of parallelism, however,
* the potential concurrency allowed by the formulas should be maximized as well. As the

* DAG of Figure 17 illustrates, greedy pivot selection tends to yield "long, skinny" formu-
las without much potential for concurrent evaluation. On the other hand, pivot selection
based on nested dissection [23,35] yields "short, fat" formulas, many terms of which could
be evaluated simultaneously. In particular, the family of GSP graphs satisfies a 2-separator
theorem, meaning that it is always possible to find 2 vertices whose removal would split
the graph into two GSP graphs of roughly equal size. For such graphs, nested dissection
yields formulas with 0(n) operations, although the constant of proportionality would be
somewhat higher. However, the formulas also have maximum depth 0(log n), giving sub-
linear evaluation times if sufficient resources are available. Various other graph classes
lead to formulas with sublinear maximum depth. In contrast, no iterative method can
give sublinear performance for the graph structures of interest regardless of the processing
hardware.

Symbolic analysis, as presented here, simply transforms one description of a Boolean
u-u computation into another, that is from a switch network to a set of formulas. Some ap-

plications, such as proving two networks equivalent or that a network implements a given
function, require stronger results. These problems are NP-hard [18], and many believe
efficient algorithms for such tasks do not exist. However, several approaches yield prac-
tical results in many instances. One approach uses a different representation of Boolean
functions that makes equivalence testing more straightforward. The author [361 has de-
vised a representation based on a different type of directed acyclic graph that is canonical,
i.e., a given function has a unique representation. Equivalence testing then becomes a
simple matter of testing whether two graphs match exactly. Furthermore, many of the
functions encountered in logic design applications are represented by reasonably small
graphs. Symbolic analysis could also be performed using these graphs as the underlying
data structure for representing Boolean functions, yielding a canonical description of the
network function.

Symbolic Switch Network Analysis 29

A Proofs of Theorems

A.1 Systems of Boolean Equations

Theorem 1 Any Boolean system [A, b] has a unique solution x given by the limit to the
sequence x', where xO(v) = 0 for all v, and x'(v) is defined for all i > 0 and all v as:

X'(v) = b(v) V V ['-'(u) A A(u,v)]. (4)
(,V)EE

Proof: First, we will show by induction on i that x' < x' +1 . The basis clearly holds,
because x°(v) = 0 < x(v). Assuming by induction that x'(u) = x'(u) v x'-1 (u) for any
vertex u, expanding Equation 4 for x' and separating terms gives

x+,(v) = b(v) V V k['u) V A A(u, v))
(u,t)EE

= b(v) V V [x'(u) A (u,v) v bOv v V [x'-'(u) A A(uv)
",(u,tE)EE](v EA

- zI+1(v) V z'(v).

Thus, the sequence is nondecreasing. Since the domain B is finite, there must be some
value k such that xk = X"+'." From Equation 4 and by induction on i, it is easy to see

that xk = x for all i > k, and consequently the sequence converges to a unique value.
Furthermore, this vertex labeling clearly satisfies the system [A, b].

Now suppose that some other labeling y satisfies the system [A, b]. We will show by
induction on i that y > x' for all i. Clearly y(v) > 0 = x°(v), and hence the basis condition
holds. Now suppose that x'-'(u) V y(u) = y(u) for every vertex u. Then

y(v) = b(v) V V ([X'-'(u)(vy(u)]VAAu,Av))

."(,')EE uVE

= '(v) V y(v)

for every vertex v, indicating that y > z'. Hence any labeling that satisfies [A, b] must be
greater than or equal to the limit of the sequence.

4 1n fact, k must be less than n.

0j

,i'a

Symbolic Switch Network Analysis 31

Since this result holds for all paths to v, Proposition 2 shows that it must hold for their
sum. Hence x is the minimum vertex labeling satisfying [A, b].
0

Theorem 3 z is the solution of the system [A, b] if and only if 7 is the solution of the
dual system f-A, D

Proof: DeMorgan's Laws can be generalized to the following rule for complementing a
Boolean formula:

Complement every variable, replace every A by v, every V by A, every 0
by 1, and every 1 by 0.

From this rule, we can see that the conditions for a labeling y to satisfy system [A, bj are
identical to those for y to satisfy the the dual system [A, D. Furthermore, if x < y for
all y in some set Y, then 7 > g for all y E Y, and vice-versa. Therefore, the minimum

*labeling satisfying [A,b] must equal the complement of the maximum labeling satisfying

[;, D and vice-versa.

* 0

A.2 Gaussian Elimination

Theorem 4 The Gaussian elimination algorithm of Figure 1 solves the system [A, b[.
Proof: The key idea of the proof is to show that each time a vertex vi is eliminated, a
modified system [A, b] is created over (Vi, E) such that the solution of this system equals
the solution of the original for all v E V. Assume for simplicity that there are no edges
of the form (v, v) in E. It can easily be shown that removing such edges will not alter
the system solution. Furthermore, the elimination code does not add any such edges as
fill-in. We also adopt the convention that A(u, v) = 0 whenever (u, v) 1 E, and similarly
that A,(u, v) = 0 whenever (u, v) i E. Under these two conventions, Equation 1 can be
written in two ways:

z(v) = b(v) V V [z(u) A A(u,v)]
tAev

(6)
= b(v) V V [x(u)AA(u,v)].

,Ev-(,,}

Define the system [Ao, bo] over the graph (Vo, Eo) as Ao = A and bo = b. For n > i > 1
define the system [A,, b,] over the graph (V, E) as

A,(u,v) - A1_(u,v) V [Ai-(u,vi) A A,_I(v,,v)] (7)

and
b,(v) = bi-I(v) V [bi(vi) A A.-(v,,v)]. (8)

Observe that the definition of A preserves the property that Aj(u, v) = 0 when (u, v) I E,,
because E, is guaranteed to have an edge (u,v) if both (u,v,) and (v,,v) are in E,.

Symbolic Switch Network Analysis 32

For 1 < i < n, define the labeling xi-I over the vertices of Vi- 1 as:

bi{ bI_(v,) v V [,(u) AA,_,(u, vi)], = vi
tvE.!, X" i-() =/ M V (9)

Note that V'4 = 0, and hence x.-1 is well defined. It can also be seen that the labeling
z produced by the code of Figure 1 equals the labeling z0 defined by Equation 9 for i = 1.

We will show by induction on i (starting from n - 1 and working downward) that x,
is the solution of the system [Ai, bi]. Clearly z.- is the solution of [Anl, bn- 1l, because
Equations 6 and 9 both reduce to Xnl(Vn) = b-l(Vn). Assume that z, is the solution
of the system [A,,b i . We must show that z-I satisfies the system [Ai_,b,_ji, and that
xI _ y for any other labeling y satisfying this system.

For v E Vi, given that z, satisfies [A,,b,], z,(v) can be expanded using Equation 6 as

x,(v) = bi(v) V V [z,(u) A A,(u,v)].
UEVi

- The definitions for b,(v) and Ai(u, v) can then be substituted to give

Sz,(v) = bi-_1(v) V [bi- 1(v) A Ai-_1(v,,v)] V

V [xz (u) A (Ai-.1i(us,v) V [Ai1(u,i) A Ai-1 (vi, v)I1)

Rearranging terms gives

x,(v) - b,_.,(v) V V [z,(u) A Ai,(u,v)] V
taEVi

bi-,_,(,) V V [xi,(,) A A,-.I(u, A) A (,,)

UE Vi

*Substituting the definition for xi- gives

x,_I(v) = x,(v) = bi-_.(v) V V[x,-I(u) A A-1(u, v)] V [xi-_(v,) A ,_1(v,,v)
uE Vj

= b,,(v) V V [zi_(u)AAi_,(u,v)]
uEV ;_

For v = vi, we can substitute zx_-(u) for z,(u) in Equation 9 giving

Xiz-I_(vi) = bi-1(v,) V V [x,_- I(u) A Ai_,(u,vi)

Combining these two cases we see that zxi_ satisfies [Ai-., bi-,].
Now suppose that a vertex labeling y defined over V- t satisfies the system [Ai- 1, bi-,.

Define the labeling y' over V as y'(v) = y(v) for all v E Vi. We will first show that

El,

Z|

pi Symbolic Switch Network Analysis 33

y satisfies the system [A,,b,], and therefore by the induction assumption that x,;_(v)

x,(v) _ y'(v) = y(v) for all v E Vi. Then we will show that x,-l(v,) <_ y(v,), thereby
completing the proof that xi- 1 : y. For v 5- vi, expanding y(v) using Equation 6 and
substituting the definition of y' gives

Y'(v) = y(v) = b^ 1(v) V [y(v,) A Ai-.1.(v,,v) V V [y'(u) A A,-i(u,v).
UEV

Expanding y(v,) using Equation 6 gives

y'(v) = bi-1(v) V [b,_i-(v,) A Aj-_i(vi, v)] V

V [y'(u) A A,_ I (u, v,) A A,.- 1(v,, v)] V V [y'(u) A A,_-1i(u, v)I.

-'. Combining terms and substituting the definitions of bi and Ai gives

y'(v) = b,(v) V V [y'(u) A Ai(u,v)].
jE Vi

Therefore y' satisfies the system [Ai, b]. For v = vi, we can assume that xi-_I(U) V y(u)
y(u) whenever Ai 1 (u, vi) : 0. Hence, y(vi) can be expanded by Equation 6 as

y(v,) = bi-1(v,) V V ([x,_I(u) Vy (u)] A AiICU, vi))
uEV, 1

bi 1(V [x,-I(u) A A 1 (u, vi) V

bi_,(v) V V [y(u) A A(u,v) V
L UEV~i 1

= ,,(v,) V y(v,),

and hence xi-(vi) <_ y(vi). Thus we have shown that x,_- < y for any y satisfying the

system [A_.1,bi_. 1 , completing the inductive proof that x, is the solution of the system
[A,, b,]. We have therefore proved the correctness of the algorithm, because the systems

[A, b] and [A0 , bo] are identical, and the labeling x returned by the algorithm equals x0 .

IL
Theorem 5 A system of equations defined on a graph can be solved by Gaussian elimina-
tion such that no vertex ha8 elimination degree greater than 2 if and only if the graph is
general series-parallel.
Proof: Assume the graph (V, E) is constructed by a sequence of productions obeying the
rules of Figure 3. Suppose the final step involves adding vertex w and one or more edges

to the graph (V', E') and possibly deleting an edge. Then vertex w has degree less than
or equal to 2 in (V, E). Furthermore, if w is selected as a pivot in Gaussian elimination,

REFERENCES 34

the resulting elimination operations will yield the graph (V', E'). This graph is also GSP.
and hence the process can be continued until all vertices are eliminated.

Conversely, suppose Gaussian elimination can be performed for a system defined on
the graph (V,E) such that no vertex has elimination degree greater than 2. Then with
the graph (V,-,,E.-1) as the basis, where V,,-, = {v,,} and E,,_1 = 0, we can construct
the graph (V, E) by a sequence of production rules, adding vertices in the reverse of their
elimination order. If vertex vi has a single neighbor v in (V,-, E,-1), then graph (V,_. E, 1
is constructed from (V,E) by applying the Acyclic Branch rule with w = v,. If vertex
vi has two neighbors u and v in (V,_1,E, 1), then graph (V,_1, E,_1) is constructed frorn
(Vi, E,) by applying either the Series or the Parallel-Series rule with w = v,, depending on
whether or not (u,v) E Ej-1 .This process proceeds until reaches (V0 , EO) = (V, E).

References

[1] C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits", Trans. of the
AIEE, Vol. 57 (1938), pp. 713-723.

[2] J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, 1976.

[3] M. Lightner and G. Hachtel, "Implication Algorithms for Switch Level Functional

Macromodeling, Implementation, and Testing." 19th Design Automation Conf., IEEE
(July, 1982), pp. 691-698.

.1 [4] M. Yoeli, and J. A. Brzozowski, "A Mathematical Model of Digital CMOS Networks",
Canadian Conf. on VLSI (1985).

[51 R. E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems," IEEE
Trans. on Computers Vol. C-33, No. 2 (February, 1984) pp. 160-177.

[6] J. Hayes, "A Unified Switching Theory with Applications to VLSI Design", Proc.
IEEE, Vol. 70, No. 10 (October, 1982), pp. 1140-1151.

2 [7] R. E. Bryant, Boolean Analysis of MOS Circuits, companion paper (1987).'I-:

5 [8] F. E. Hohn and L. R. Schissler, "Boolean Matrices and Combinational Circuit De-
* sign", Bell Systems Technical Journal, Vol. 34 (1955), pp. 177-202.

[9] G. Ditlow, W. Donath, and A. Ruehii, "Logic Equations for MOSFET Circuits",
International Symposium on Circuits and Systems, IEEE (1983), pp. 752-755.

[10] I. N. Hajj, and D. Saab, "Symbolic Logic Simulation of MOS Circuits", International
Symposium on Circuits and Systems, IEEE (1983).

[111 C. J. Terman, Simulation Tools for Digital LSI Design, PhD Thesis, NET Dept. Elec.
Eng. and Comp. Sci. (October, 1983).

0 $& u AAA 11i: a o

REFERENCES 35

[12] E. Cerny, and J. Gecsei, "Simulation of MOS Circuits by Decision Diagrams", IEEE
Trans. on Computer-Aided Design of Integrated Circuits, Vol. CAD-4, No. 4 (October.
1985), pp. 685-693.

[13] B. A. Carr6, "An Algebra for Network Routing Problems", J. Inst. Maths Applic,..
Vol. 7 (1971), pp. 273-294.

[14] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, ','he Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

[15] D. J. Lehmann, "Algebraic Structures for Transitive Closure", Theoretical Computer

Science, Vol. 4 (1977), pp. 59-76.

[16] R. E. Tarjan, "A Unified Approach to Path Problems", J. ACM, Vol. 23, No. 3 (July.
1981), pp. 577-593.

[17] M. A. Harrison, Introduction to Switching and Automata Theory, McGraw-Hill, 1965.

[18] M. R. Garey, and D. S. Johnson, Computers and Intractability, Freeman, 1979.

[19] I. Spillinger, and G. M. Silberman, "Improving the Performance of a Switch-Level
Simulator Targeted for a Logic Similation Machine", IEEE Trans. on Computer-

Aided Design of Integrated Circuits, Vol. CAD-5, No. 3 (July, 1986), pp. 396-404.

[20] R. E. Tarjan, "Fast Algorithms for Solving Path Problems", J. A CM, Vol. 23, No. 3
(July, 1981), pp. 594-614.

[21] E. C. Ogbuobiri, W. F. Tinney, and J. W. Walker, "Sparsity-Directed Decomposi-
tion for Gaussian Elimination on Matrices", IEEE Trans. on Power Apparatus and
Systems, Vol. PAS-89, No. 1 (January, 1970), pp. 141-150.

[22] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits.
PhD Thesis, Univ. of California, Berkeley, Dept. of Elec. Eng. (1975).

0
[23] R. J. Lipton, D. J. Rose, and R. E. Tarjan, "Generalized Nested Dissection", SIAM

Journal on Numerical Analysis, Vol. 16, No. 2 (April, 1979), pp. 346-358.
[24] R. J. Duffin, "Topology of Series-Parallel Networks", J. Math. Anal. and Applications,

Vol. 10 (1965), pp. 303-318.

[25] C. A. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[26] L. A. Glasser, and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits,
Addison-Wesley, 1985.

[27] N. H. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley,
1985.

[28] M. Annaratone, Digital CMOS Circuit Design, Kluwer Academic Publishers, 1986.0I
O . . -

REFERENCES 36

[291 M. Horowitz, private communication (1985).

[30] C. Lutz, S. Rabin, C. Seitz, and D. Speck, "Design of the MOSAIC Element," Conf.

on Advanced Research in VLSI, MIT (1984), pp. 1-10.

(311 A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation, and Compiling,
Volume II: Compiling, Prentice-Hall, 1972.

[32] A. V. Aho, and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

[33] J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle", J.
A CM, Vol. 12, No. 1 (1965).

[34] M. A. Breuer, and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems.
Computer Science Press, 1976, p. 46.

[35] V. Pan, and J. Reif, "Efficient Parallel Solution of Linear Systems", Technical Report
TR-02-85, Aiken Computation Laboratory, Harvard University, 1985.

[36] R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation", IEEE
Trans. on Computers, Vol. C-35, No. 8 (August, 1986) pp. 677-691.

.VV

I

.

I-

I

ii:"

Boolean Analysis of MOS Circuits*

Randal E. Bryant
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

February 6, 1987

Abstract

The switch-level model represents a digital metal-oxide semiconductor (MOS) cir-
cuit as a network of charge storage nodes connected by resistive transistor switches.
The functionality of such a network can be expressed as a series of systems of Boolean
equations. Solving these equations symbolically yields a set of Boolean formulas that
describe the mapping from input and current state to the new network state. This
analysis supports the same class of networks as the switch-level simulator MOSSIM II
and provides the same functionality, including the handling of bidirectional effects and
indeterminate (X) logic values. In the worst case, the analysis of an n node network
can yield a set of formulas containing a total of 0(n 3) operations. However, all but
a limited set of dense, pass-transistor networks give formulas with 0(n) total opera-
tions. The analysis can serve as the basis of efficient programs for a variety of logic
design tasks, including: logic simulation (on both conventional and special purpose
computers), fault simulation, test generation, and symbolic verification.
Keywords and phrases: switch-level networks, symbolic analysis, logic simulation,

fault simulation, simulation accelerators.

1 Introduction

The switch-level model jIl has proved successful as an abstract representation of digital
metal-oxide semiconductor (MOS) circuits for a variety of applications. This model repre-
sents a circuit in terms of its exact transistor structure but describes the electrical behavior
in a highly idealized way. It expresses transistor conductances and node capacitances by
discrete strength and size values; represents node voltages by discrete states 0, 1, and X
(for invalid or indeterminate); and makes no attempt to model exact circuit timing. The
switch-level model can capture many of the important phenomena encountered in MOS

*This research was supported in part by the Defense Advanced Research Projects, Agency ARPA Order

Number 4976, and in part by the Semiconductor Research Corporation under Contract 36-01-068.

4 1

Boolean Analysis of MOS Circuits 2

circuits such as: ratioed, complementary, and precharged logic; dynamic memory; and bidi-
rectional pass transistors. Unlike programs that attempt to model circuits at a detailed
electrical level, programs based on the switch-level model can operate at speeds approach-
ing those of their counterparts based on more traditional gate-level models. Examples
of applications that have successfully applied switch-level models include logic simulators
[1,2], fault simulators [3,4], test pattern generators [5,6], and symbolic verifiers 7,81.

1.1 Switch-Level Algorithms

-" Most programs that model circuits at the switch level utilize totally different algorithms
than those developed for logic gate circuits. To accommodate the bidirectional nature of
the transistors, they compute the state of a node by applying graph algorithms to trace
the connections between nodes formed by conducting transistors. This departure from tra-
dition has several drawbacks. First, considerable effort is often required to adapt existing
techniques for use at the switch-level. For example, in implementing the fault simulator

* FMOSSIM, we found it quite challenging to adapt concurrent simulation techniques [91,
although the resulting performance proved well worth the effort. Similarly, automatic test
pattern generation for switch-level circuits has not yet reached the success achieved for
logic gate circuits. Second, although programs based on the switch-level model have rea-
sonable performance, they fall short of those based on gate-level models. Computing node
states by applying graph algorithms to the transistor data structure requires significantly
greater effort than computing the output of a logic gate. Finally, these algorithms do not
map well onto the special purpose processors that have been developed to accelerate such
tasks as logic gate simulation [10,11,12]. Although special purpose processors for switch-
level simulation have been designed and constructed 113,141, these processors require a fair
amount of specialized hardware. It is unlikely they will ever achieve the cost/performance
of processors that support only gate-level evaluation.

1.2 A New Approach
6
-vY This paper proposes a new approach that deals with all aspects unique to the switch-level

model in a preprocessing step. The preprocessor "compiles" a switch-level network into a
set of Boolean formulas. For each node, a pair of formulas specifies its steady state response
as a function of the initial node states. A simulator can then compute new node states

by simply evaluating the appropriate formulas. Fault simulators and test generators can
utilize traditional techniques by treating the set of formulas like a logic gate network. The
formulas can be translated directly into machine language instructions for fast evaluation
on a general purpose computer, or they can be mapped onto any special-purpose hardware
that supports Boolean evaluation. An efficient symbolic analyzer, the subject of this paper,
serves as the basis of this preprocessing.

This approach has advantages over traditional methods of switch-level evaluation in
terms of both speed and flexibility. As an analogy, a programming language compiler yields
a performance advantage over an interpreter, because the cost of translating the program

0" I '

*- ~ .- . - -

Boolean Analysis of MOS Circuits 3

into machine instructions is paid only once during compilation rather than repeatedly
during execution. Similarly, the analyzer gives a performance advantage over traditional
switch-level algorithms, because the added cost of switch-level evaluation is paid only once
during preprocessing. In contrast to special purpose hardware for switch-level evaluation,
many extensions to the model can be made by simply modifying the analyzer, a much
simpler task than modifying the hardware. Furthermore, the Boolean description of switch-
level subnetworks can more easily be combined with subnetworks modeled at other levels
for mixed-mode evaluation. Finally, as will be discussed briefly, the preprocessor generates
a description that can be executed with a far greater degree of parallelism than is possible
with more conventional switch-level algorithms.

The analyzer described in this paper supports the same class of switch-level networks
as the simulator MOSSIM H [1]. It captures all aspects of the MOSSIM II model including:
bidirectional effects, different signal strengths, and indeterminate (X) logic values. The
analysis of an n node network produces a set of formulas with a total of at most 0(n 3)
operations. For all but a very small class of dense, pass transistor networks (e.g., barrel

* shifters), at most 0(n) operations are required. Hence, for practical purposes this approach
incurs the same asymptotic complexity as other switch-level programs.

1.3 Related Work

Other researchers have developed preprocessors to translate a switch-level network into
some algebraic representation that allows efficient evaluation. These previous efforts had,
for the most part, limited generality and accuracy. In addition, they did not achieve
acceptable efficiency. Pfister of IBM [15] probably deserves credit for originating the idea
of describing arbitrary MOS circuits in terms of Boolean operations. He was seeking a
way to perform switch-level simulation on the Yorktown Simulation Engine (YSE) [101.

Researchers at IBM [16] have modified and adapted a traditional switch-level algorithm
for execution on the YSE. Their approach can be viewed as generating code to iteratively
solve a system of equations in an algebra where elements encode both the strength and

* the state of a signal [17]. To accommodate the small word size of the machine, they
arestrict the number of signal strengths to 3 and use a pessimistic method for computing

the effects of unknown states. More seriously, since the machine cannot perform data
dependent branches, their code must always iterate a wgrst case number of times. For
many transistor structures with n nodes and t transistors, this requires a total of 0(n t)
YSE instructions, a high cost in both space and time. In a related effort, the SLS program
developed at IBM [181 generates code for a general purpose computer that executes a

. single iteration in the solution of the same system of equations solved by MOSSIM II.
During simulation this code is executed repeatedly until the values converge. Although
this program achieves impressive performance on a variety of circuits, a significant class
of pass transistor networks can require many iterations to converge. Furthermore, this
approach cannot be implemented on existing simulation hardware, nor can it aid such
tasks as test pattern generation or symbolic verification.

Others have attempted to express switch-level algorithms in terms of either Boolean

...0

Boolean Analysis of MOS Circuits

or closely related algebras. All of these efforts have yielded highly inefficient results-
in the worst case the size of the algebraic description can grow exponentially with the
size of the network. These programs partition the circuit into subnetworks and analyze
each subnetwork separately. Most subnetworks are quite small--containing no more than
10 transistors. Hence even an exponential algorithm can have practical value. However,
we have often encountered circuits containing subnetworks of 1000 or more transistors.
For such cases these algorithms would be totally inadequate. The method developed by
Cerny and Gecsei [191 creates a symbolic representation of all possible partitionings of
a subnetwork into connected components formed by the conducting transistors. All but
the smallest subnetworks have many partitionings, and hence this approach has limited
potential. The methods of Ditlow, et al, [20] of Hajj and Saab, [21] and of Terman [2]
enumerate the set of all simple paths to each node and then encode information about
each path algebraically. For many pass transistor networks, (e.g., the Tally circuit of
Mead and Conway [22]), the number of such paths grows exponentially with the number
of transistors. Furthermore, all of these methods place more restrictions on the class of
networks than does MOSSIM II, and some do not do as well at modeling the effects of
X values. Finally, the method of Hajj and Saab utilizes a mixed Boolean-integer algebra,
in which the l's in different sets of Booleans must be tabulated and compared. Such an
algebra seems needlessly awkward and would be hard to implement on most simulation
hardware.

In a different application of symbolic analysis, the MOSSYM program [7] simulates
MOS circuits symbolically. A symbolic simulator resembles a conventional simulator ex-
cept that the input patterns may consist of Boolean variables in addition to the constants
0 and 1. The node states computed by the simulator represent Boolean functions over
the present and past input variables. This program is designed to rigorously verify digital
circuits, proving their correctness for all possible input sequences. As a consequence, it
must solve Boolean equivalence, a well-known NP-hard problem [23]. The worst case per-

V formance of the program is exponential in the number of variables, and many researchers
believe no better performance can be achieved. The methods used by MOSSYM for
computing the Boolean behavior of a switch-level network form the basis of the analyzer
described here. However, the analyzer can use different data structures and algorithms for
representing Boolean functions, since it need not prove equivalence. Consequently, while
the simplification algorithms may not yield the most compact formulas possible, they have
acceptable worst case performance. Future versions of MOSSYM will operate on prepro-

cessed networks rather than on the transistor structure directly, gaining the same benefits
from preprocessing as do more conventional simulators.

1.4 Overview

The analyzer presented in this paper overcomes many weaknesses of the previous attempts.
Important features include:

* It partitions the network into channel-connected subnetworks and derives the steady

state response of each subnetwork separately. This partitioning divides the analysis

Boolean Analysis of MOS Circuits 5

task into smaller subproblems.

" It encodes logic states 0, 1, and X with pairs of Boolean values. By this encoding,

it can accurately characterize the effects of unknown node and transistor states with

Boolean formulas.

" Starting with the maximum strength level and working downward, it derives systems

of Boolean equations for each strength level. It can capture the effects of any (fixed)

number of signal strengths. These systems of equations express the effects of all paths

in the graph but lend themselves to solution methods of polynomial complexity.

" It solves the equations symbolically by Gaussian elimination. Gaussian elimination

can exploit the sparse structure of the networks to solve most n node subnetworks
with O(n) algebraic operations.

" It represents the set of Boolean formulas as a directed acyclic graph (DAG). This

representation naturally allows sharing of common subexpressions. The size of the
DAG describing the steady state response of all nodes in a subnetwork is bounded
by the number of algebraic operations required during the Gaussian eliminations.

Comparing the analyzer to the inner workings of the circuit-level simulator SPICE [241
lends some insight into the underlying ideas. During transient analysis, SPICE computes
the behavior of a nonlinear network at each time point by performing a series of iterations,
each of which involves setting up a system of linear equations and solving it by Gaussian

* elimination. Similarly, our analyzer computes the behavior of a network of non-Boolean
switches (due to the different signal strengths and the X states) by performing a series
of iterations, each of which involves setting up 3 systems of Boolean equations and solv-
ing them by Gaussian elimination. In this respect, both programs apply the powerful
mathematical technique of solving a difficult problem over a poorly structured domain by
recasting it as a series of problems in a more tractable domain for which efficient, highly
developed algorithms exist.

Unlike SPICE, however, the analyzer iterates in a fixed progression over signal strengths
rather than until it reaches some convergence criterion. This progression is possible be-
cause of the discrete nature of signal strengths. At a given strength level, the analyzer has
already computed the effects of stronger signals and can safely ignore weaker ones. Fur-
thermore, rather than being performed on each time step, the analyzer need only compute
the behavior once, yielding a set of formulas that are evaluated repeatedly during simula-
tion. Such a symbolic analysis is possible because of the simpler natures of both the circuit
elements and the mathematical domain. Whereas SPICE must linearize the network by
evaluating complex device models at the current operating points of the circuit elements,
the analyzer need only evaluate the effects of the possible paths at each strength level.
Furthermore, Boolean formulas are far easier to manipulate and simplify than formulas
over real numbers. Thus, while interesting parallels exist between SPICE and symbolic

switch-level analysis, many factors contribute to make the latter far more efficient.

Boolean Analysis of MOS Circuits 6

A companion paper [25] provides background on the mathematical and algorithmic
techniques used in the analysis. This paper gives a detailed formulation of the switch-
level model in terms of Boolean algebra. It also describes several extensions to the model,
including ways to model circuit faults, degraded logic signals, and charge decay. These
extensions demonstrate the power of the basic framework. The analyzer can incorporate
new modeling features by modifying the basic systems of equations slightly. Future papers
will cover implementation issues, applications, and experimental results.

The remainder of the paper is organized as two major parts. The first, consisting of
Sections 2-4, formulates the behavior of a switch-level network as a system of equations
in an abstract Boolean algebra. The second part, consisting of Sections 5-7, presents
refinements of the technique, examples, and extensions to the switch-level model.

2 The Switch-Level Model

*The switch-level model considered here has been described in detail elsewhere [1]. This
section gives an overview of the model in terms of a cleaner notation and defines the
symbolic analysis problem.

2.1 Network Model

A switch-level network consists of a set of nodes and a set of transistors. A node is classified
as either input or storage. An input node represents a connection to a signal source
external to the chip, supplying either power, ground, clock, or data. A storage node, like a
capacitor in an electrical network, retains its state in the absence of applied inputs and can
share charge with other storage nodes. The voltage on node n' is represented by its state
n E {0, 1, X}, with 0 and 1 corresponding to low and high voltage levels, respectively,
and X corresponding to an indeterminate voltage between low and high indicating an
uninitialized network state or an error condition caused by a short circuit or charge sharing.

A storage node has a characteristic size from the set {1, 2,..., k}. This size indicates, in
* a highly simplified way, the node capacitance relative to that of other nodes with which it

may share charge. That is, when a set of storage nodes share charge (due to connections by
conducting transistors), only the connected nodes of maximum size determine the outcome.
Input nodes are indicated by size w > k. The set)4, contains all nodes of size s, and hence
)4 denotes the set of input nodes.

* A transistor has terminals labeled, "gate", "source", and "drain". It acts as a resistive
switch connecting the source and drain nodes controlled by the state of the gate node.

Transistors act as bidirectional elements with no predetermined direction of information
or current flow. A transistor has a type indicating the conditions under which it will become
conducting. A d-type transistor always conducts; an n-type conducts when its gate has

'This presentation uses a notation where nodes are named by lower-case letters, e.g., n, n, their current

states are indicated by italicized, lower-case letters, e.g., m, n, and their new states are indicated by italicized,
upper-case letters, e.g., M, N.

Boolean Analysis of MOS Circuits

state 1; while a p-type conducts when its gate has state 0. When the gate node of an n-type
or p-type transistor has state X, the transistor can range between fully conducting and
open circuited. Transistor states 0, 1, and X represent conduction levels nonconducting,
fully conducting, and indeterminate, respectively.

Each transistor has a characteristic strength from the set {k + 1, k + 2,..., w - 1}. This
strength indicates, in a highly simplified way, the transistor conductance relative to those
of other transistors in a ratioed circuit. That is, every path of conducting transistors has
a characteristic strength equal to the that of the weakest transistor in the path. When a
set of paths form from several input nodes to a storage node, only those inputs connected
by maximum strength paths determine the new node state. For nodes m and n, the set
T.(m,n) contains all transistors of strength s having these two nodes as source and drain.

2.2 The Channel Graph

The channel graph represents the interconnection structure of a switch-level network. This
graph has the storage nodes of the circuit as vertices, and an edge (m, n) for each pair of
storage nodes m and n such that T,(m, n) # 0 for some strength a. It describes the static
(independent of transistor state) interconnections between storage nodes formed by the
source-drain connections of the transistors. The channel graph is considered either undi-
rected or directed depending on context. When talking about general structural properties
of a circuit, an undirected graph simplifies the discussion. On the other hand, symbolic
analysis requires a directed graph, because the labels assigned to the edges are direction
sensitive.

In general, a channel graph consists of many connected components. Therefore, it de-
fines a partitioning of the switch-level network into a set of channel-connected subnetworks,
where each subnetwork consists of the set of nodes in a graph component, plus the set of
transistors for which these nodes are sources or drains. Note that an input node is not
part of any subnetwork, but a transistor for which the node is source (drain) is in the
subnetwork of its drain (source) node.

* Within a subnetwork, the behavior can be complex and difficult to analyze due to the
bidirectional transistors and the many ways state forms in a MOS circuit. The interactions
between subnetworks, however, are much more straightforward. Each subnetwork acts as
a sequential logic element having as inputs the input nodes connected to transistor sources
and drains as well as the gate nodes of the transistors. The subnetwork state is stored

0O, as charge on the storage nodes, and the outputs are those nodes that are gate nodes of
transistors in other subnetworks. Hence, the overall operation of a switch-level simulator
is similar to that of a logic gate simulator--changing values on the subnetwork inputs
require updating the state and outputs, and these changing output values in turn affect
other subnetworks. The challenge then is to develop formulas representing the behavior
of individual subnetworks.

In practice, many subnetworks are small--containing at most 10 transistors. However,
we have encountered subnetworks with over 5000 transistors (essentially the entire data
path of a 16-bit microprocessor [261), and hence the analysis of each subnetwork must be

O

1.4.

Boolean Analysis of MOS Circuits 8

as efficient as possible.

2.3 Steady State Response

The steady state response function describes the behavior of a subnetwork. Informally,
this function can be explained as follows. For a given set of connected input node and
initial storage node states, the transistors are set according to their gate node states. The
transistors in the 1 and X states create (potentially) conducting paths from input nodes
to storage nodes and between pairs of storage nodes, causing the storage nodes to attain

new voltage levels. The steady state response for a node equals the state (0, 1, or X) this
node would attain if the transistors were held fixed long enough for the nodes to stabilize.
When nodes or transistors in the X state are present, the steady state response on a node
equals 0 or 1 only when it would attain this unique state regardless of the voltages and
conductances of these nodes and transistors. Otherwise the steady state response equals

The steady state response for a subnetwork is defined formally in terms of the paths

between nodes formed by the conducting transistors. This approach unifies the variety of
different ways logic values form in MOS circuits including: stored charge, charge sharing,
and both ratioed and complementary logic. For a given set of transistor states, transistors
in the 1 and X state form connections between their source and drain nodes. A rooted

path p is a directed path originating at node Root(p), terminating at node Dest(p) and
consisting of a (possibly empty) set of transistors Trans(p). The strength of path p, denoted
"pl is defined as

I= min [Size[Root(p)], min Strength(t)]

A rooted path represents a source of charge from its root to its destination with driving
ability indicated by its strength. Rooted paths can be classified into three types according
to their strength. A path with strength 1 < IpI < k represents a source of stored charge
from a storage node with an approximate capacitance determined by the size of this node.
Note that the stored charge initially on the node is represented by a path with root and
destination equal to the node and with no transistors. A path with strength k < IpI <
w represents a source of current from an input node with an approximate conductance
determined by the strength of the weakest transistor in the path. A path with strength
jp[= wo must contain no edges and have an input node as both root and destination. Such

a path represents the external current supplied to the input node. The overall ranking
of path strengths reflects the fact that a connection from an input node can override any
stored charge, while a direct connection to an input can override any resistive connection
from some other input.

The steady state response of a node depends only on the paths to the node that are
not "blocked". A definite path is defined as a rooted path p such that no transistor in
Trans(p) is in the X state. A path p is said to be blocked if for some initial segment p'
of p (i.e. Root(p') = Root(p) and Tran8(p) _ Trans(p)) and for some definite path q,

ip

.: = -- = -. -. , - -|, .- , -- r'-v-. -, :r : - . 'r -t -_.-r: r w, - v -

Boolean Analysis of MOS Circuits 9

Dest(p') = Dest(q) and jp'[< jq[. Intuitively, a path is blocked if the source of charge it

represents would be overridden by a stronger source at some intermediate node. Define

the path relation P between pairs of nodes as m P n when there is an unblocked path p

with Root (p) = a and Dest(p) = n. Then the steady state response on node n, denoted

-.- N, is given by the equation
N = lub{m P n}, (1)

where "lub" represents the least upper bound over the ordering 0 < X and 1 < X. In other

words, if all unblocked sources of charge to a node drive it to 0 (or to 1), then the steady

"- state response equals 0 (or 1). Otherwise, if the node is driven by conflicting sources or by

sources of unknown value, the steady state response equals X. It can be shown that this

characterization of the steady state response provides an accurate modeling of the effects

of unknown states as well as several important mathematical properties [1].

2.4 State Encoding

To cast the switch-level model in terms of Boolean operations, a state value y E {0, 1, X}
is encoded as two Boolean values y.1, y.0 E {0, 1} as follows

y .1 y.0SY1 0

0 0 1
X 1 1

Formally, .1 and .0 are operators, expressed in postfix notation, mapping elements of
{0, 1, X} to elements of {0, 1}. The combination y.1 = y.0 = 0 does not represent a
valid state. It can be considered a "don't care" combination in the derivation. With this

encoding, if y is the least upper bound of a set A consisting of elements a E {0, 1, X}, then
4

y.1 = Va.1 (2)
aEA

y.0= V a.0, (3)
aEA

where V denotes the Boolean sum of a set of elements.

With this Boolean encoding of state values, the symbolic analysis problem can be

defined as follows. For each node n, introduce Boolean variables n.1 and n.0 to represent

the encoded value of the initial node state. Of course, when the node is known to have
a fixed state (e.g., power or ground), its state can be encoded by constants rather than

variables. For each node n, we are to derive Boolean formulas, denoted N.1 and N.0, for the
encoded steady state response in terms of the node state variables. The encoding of node
states makes it possible to express the three-valued circuit behavior using conventional

Boolean algebra. This greatly simplifies the algebraic manipulation portion of the symbolic

analyzer, at the cost of requiring a pair of formulas to describe each node.

N@N

K,' A .. .

Boolean Analysis of MOB Circuits 10

In terms of this encoding, Equations 2 and 3 can be applied to Equation 1 to give:

N.1 = Vrn.1 (4)
aLPU

N.0 = V m.0. (5)
3.pU

3 Mathematical and Algorithmic Background

This section briefly summarizes the mathematical notation, results, and algorithms devel-
oped in the companion paper.

3.1 Symbolic Algebra

A Boolean formula describes a function mapping each possible combination of values for
the set of p variables to 0 or 1. Mathematically, symbolic analysis can be viewed as
manipulating elements of the algebra (B, A, V, -, 0,1), where

' '.., B -- {f:{0,1}P'. {0,1} }.

The operations A, V, and -, denote Boolean AND, OR, and NOT, respectively, applied to

functions. The distinguished elements 0 and 1 represent the constant functions that yield
0 and 1, respectively, for all argument values. This process of abstracting from a primitive

domain to one of functions, while maintaining the algebraic properties, forms the basis of
symbolic analysis.

The Boolean product of the elements in a set A is denoted A.EA a. The product of an
empty set is defined to equal 1. Similarly, the Boolean sum of the elements in a set A is
denoted VEA a. The sum of an empty set is defined to equal 0.

3.2 Systems of Boolean Equations

Systems of Boolean equations provide a mathematical formalism for networks of switches
much as do systems of linear equations for networks of resistors. However, to emphasize
the sparse nature of the networks, labeled graphs are preferred to a matrix notation.

A system of Boolean equations is represented by an edge and vertex labeling on a
directed graph (V, E), where a labeling indicates of an assignment of elements of B to
every edge or vertex. The system [A, b] consists of an edge label A(u, v) E B for each
(u, v) E E and a vertex label b(v) E B for each v E V. Vertex labeling x satisfies the
system [A, b] when

x(v) = b(v) V V [x(u) A A(u, v)]I!(u,tu) E

for every v E V. In general, many labelings may satisfy a system, but by defining an

appropriate partial ordering of the elements of B, every system can be shown to have a

unique minimum satisfying labeling. This labeling is termed the system solution.

04

Boolean Analysis of MOS Circuits 11

The solution of a Boolean system describes the conditions under which conducting
paths will form in a switch network. More precisely, P, is defined as the set of all paths
from vertex u to v in the graph. For solution z of the system [A, b]:

X (V) V V b~)A A A (st)]
uEV PEP.,. (8,j)EP

for all vertices v. In other words, if the "value" of a path is defined as the Boolean product
of the initial vertex label and all edge labels, then z(v) equals the Boolean sum of the
values of all paths terminating at v.

A dual system of Boolean equations is similar to a normal system, but with the roles
of A and V interchanged. Labeling z satisfies the dual system [A, b]D when

Sz(v) = b(v) A A [x(u) V A(u,v)]
(U,v)EE

*. for every v E V. Dual systems express conditions under which conducting paths are absent
in a switch network. More precisely, let X denote the edge labeling with each element equal
to the Boolean complement of the corresponding element of A, and similarly for b. For
solution x of the dual system [A,)D:

X (v) = -V V b(u)A A A(s,t)
EV PEP,* (,t)Ep

Gaussian elimination can solve a system of Boolean equations (either normal or dual),
with operations A and V replacing the real arithmetic used when solving linear systems.
Most channel graphs fall into a class called General Series-Parallel (GSP). This class in-
cludes both conventional series-parallel graphs as well as ones containing acyclic branches.
Gaussian elimination requires at most 12n algebraic operations to solve a Boolean system
defined over an n vertex GSP graph.

3.3 Boolean Formula Representation

A directed acyclic graph (DAG), with leaves denoting variables and constants and with
nodes denoting Boolean operations, can represent a set of Boolean formulas. The symbolic
solution of a Boolean system generates a DAG with each formula indicated by a pointer to
some DAG node. The symbolic manipulator applies a Boolean operation to two formulas
by creating a new node with branches to the nodes representing the arguments. By this
means, the total size of the Boolean description generated is bounded by the number of
algebraic operations performed during Gaussian elimination. The manipulator applies
graph transformation rules corresponding to the laws of Boolean algebra to simplify the
formulas, thereby reducing the DAG size.

A given Boolean function has many different DAG representations. The exact formula
structure generated during Gaussian elimination depends on the order in which vertices
are eliminated. Hence, the result is neither unique nor of minimum size. Using only these
"weak" symbolic manipulation algorithms, however, avoids trying to solve any NP-hard
problems.

I

Boolean Analysis of MOS Circuits 12

4 Boolean Representation of the Steady State Re-
sponse

This section formulates the steady state response of a node in terms of Boolean operations
as well as relations and predicates between the nodes. It then develops systems of Boolean
equations to describe the steady state response symbolically.

4.1 Strength Encoding

The analyzer accounts for the effects of different strength signals by starting at the max-
imum strength and working downward, each time adding in the effects from paths of the
next lower strength. This approach captures signal strength effects in the structure of the
equations to be solved. In contrast, MOSSIM II and most other switch-level simulators

J, encode strength effects in the algebra in which the equations are expressed. This structural
* approach makes it possible to express the behavior in terms of Boolean algebra. It has the

disadvantage that the number of equations to be solved is proportional to the total number
Jil of signal strengths w, whereas the algebraic approach can use algorithms with complexity

essentially independent of w. This does not compromise the efficiency significantly, how-
ever, because few MOS circuits require more than 6 signal strengths to characterize their
behavior (2 storage node sizes, 3 transistor strengths, and I input node size.)

For a given set of transistor states and for signal strength s, the path relation P, is
defined as m P n when there exists an unblocked path of strength greater than or equal to
s from m to n. If we define N.1. as

N.AN = \ A .1 (6)

and N.O. as

N.0 = V m.0 (7)
UP.n

then N.1. (respectively, N.O.) describes the conditions under which node n will be the
destination of an unblocked path of strength s or greater originating at a node m with
m = 1 or X, (resp., 0 or X.) By this definition, N.1 = N.11 and N.0 = N.01 for node n.

Consider the general form of an unblocked path from node m to node n having strength
* greater than or equal to a. It can be an unblocked path of strength greater than s, in
.. which case m P,+, n. Otherwise, the path must have strength s, the possible forms of

which are illustrated in Figure 1. For a driving path, node m must be an input node, and
the path must consist of a (possibly empty) sequence of transistors of strength greater than
a to some node 1, followed by a transistor of strength s, followed by a (possibly empty)
sequence of transistors of strength greater than or equal to s to n. The portion from m
to 1 cannot be blocked, and hence m P,+, 1. Furthermore, no node in the portion from 1
to n, except 1, can be the destination of a definite path of strength greater than s. For
a charging path, node m must be a storage node of size a, and the path must consist of a

Jil 111'i

Boolean Analysis of MOS Circuits 13

Driving Path:
> 8 > 8 8 >8 >8

Size=w - " . .- - .
m 1n

Charging Path:

Size s " " -
m n

Figure 1: General Form of a Strength s Path. For s > k, the path originates at an
input node, passes through a strength s transistor, and contains no weaker transistors.
For s < k, the path originates at a storage node of size s.

sequence of transistors from m to n such that no node is the destination of a definite path
of strength greater than s.

These conditions can be incorporated into a formal definition of P by introducing addi-
tional predicates and relations. The conditions expressed by these conditions and relations
can then be expressed symbolically as the solutions to systems of Boolean equations. For
each node n define the predicate Co(n) as holding when n is not the destination of any
definite path of strength greater than or equal to s. This predicate expresses the condition
that the node is clear, i.e., not blocked, for signals of strength s - 1. Define the relation

as m Q, n when the following conditions hold:

* There is a path p in the network with Root(p) = m and Dest(p) = n consisting only
of transistors with state 1 or X and strength greater than or equal to s.

* C°+ 1(1) holds for every node 1 in p other than m.

The relation P0 can then be expressed as P,= {(n,n)In E R,)}, and for s < w:

P. = P.+, U{Im*n)131,mP.+ 1and1Q.n}

U {(mn) M Q. n, C.+i(m), and mE).}

The three terms in this equation represent the three classes of unblocked paths having
strength greater than or equal to 8 discussed above.

*O Substituting for the definition of N.1, gives

N.18 = V m.1 V V V m.1 V V Co+I(m) A (mE .,) A m.1
P.+ii 1Q.n nQ.n

* ~*By Equation 6 the first term in this equation equals N.1,+,. The second term can be
transformed by reversing the ordering of the summation, applying Equation 6 inside the
summation, and changing the summation variable as follows:

V m.i = 1. (V ma.) = V L.1.+,= V M.I.+,
nP.+,A lO.n 1Q.. .P.+sl 10.n xO.n

Sv - -

Boolean Analysis of MOS Circuits 14

The equation for N.1, then becomes

N.a 1, N.1,+, V V (M-.1+ 1 V [Ca+i(M) A (m E)V,) A M.1j), 8

By similar reasoning, N.O can be written as

N.O. N.Oo+, V V (M.O+ V [C.+(m) (m E V,) AM.O]). (9)

Thus the steady state response at strength s is expressed in terms of the response
at strength s + 1, the relation Q, and the predicate C,+ 1 . Equations for both Q2 and
C,+1 can be formulated as systems of Boolean equations, thereby formulating the steady
state response in Boolean terms. Interestingly, this derivation yields a result similar to
one derived by Byrd, Hachtel, and Lightner (27] based on an "order of magnitude" linear

network model. They show that at each strength level, the effect of all stronger signals
to a node can be represented by a single voltage source with voltage corresponding to the
net signal value, while all weaker signals can be ignored. Terms of the form M.1,+ and
M.O,+1 in Equations 8 and 9 are analogous to a source at node m representing the net
effect of the stronger signals at this node. Furthermore, these equations contain no terms
representing signals of strength less than s.

* 4.2 Symbolic Formulation

With this background, we are ready to formulate the steady state response in terms of
systems of Boolean equations. For a transistor t, the formulas indefinite (t) and potential (t)

- indicate whether the transistor is not definitely conducting (in state 0 or X) or potentially
conducting (in state 1 or X) depending on the state of its gate node n as follows:

type indefinite(t) potential(t)
n-type n.0 n.1
p-type n.1 n.O

4 d-type 0 1

Let (V, E) be a directed graph corresponding to a single component of the channel

graph. For each strength level s, such that w > s > 1, the analyzer sets up and solves
tji'ree systems of Boolean equations (two normal and one dual) for different labelings of

.this graph. The solutions yield formulas for N.1., N.00, and C.+I(n) for each storage node
n in the subnetwork. In each case, the edge labeling describes the transistor connections

* .~between pairs of storage nodes, while the vertex labeling de3cribes a combination of the
initial value on the storage node plus those on input nodes connected by single transistors.

This approach takes advantage of the fact that any network path passing through an input
node must be blocked, and hence transistors connected to input nodes act as unidirectional
switches.

Starting with N.1,, = 0 for any storage node n, the analyzer computes formulas for
N.i,, w > s > 1 by solving the system [Conduct,, init1.]. This system of equations is

4t

4

' ,, d" v " . .. W , .,',,, " !' '..;.,.'C .L : -'V f: -" = '

Boolean Analysis of MOS Circuits 15

based on Equation 8. The edge labeling Conduct, expresses the conditions under which a
sequence of transistors satisfies the conditions of the relation Q,:

Conduct,(m,n) = N.c,+I A Conduct,+1(mn) V V potential(t) , (10)
] tET.Cnn)

where Conduct, (m,n) = 0. The term N.c,+i is a formula that symbolically expresses
the predicate C,+1(n), as will be defined shortly. Note the asymmetry in the above edge
labeling, where in general Conduct, (, n) 5 Conduct, (n, m). It arises from the requirement
,hat C.+ 1(1) must hold for all nodes I in the path other than the first one. By forming an
-dge label equal to the Boolean product of the conduction condition for the corresponding
transistors and the clear condition for the edge destination, any path formed by these

edges must be clear at all but the first node. The vertex labeling initl, combines terms
inside the summation of Equation 8 for a storage node and for connected input nodes:

n"l"= N.1,+, V N.c,+i A V V [potential(t) A m.1] s > k
.initl(n) =E. tET ,(mn){ N.1,+, V (N.c,+I A n.1) n E)N,

N.1+,+ else
(11)

Starting with N.O = 0, the analyzer computes formulas for N.0,, w > s > 1 by
solving the system [Conduct,, initO.]. This system is based on Equation 9. The edge
labeling Conduct, is the same as before (Equation 10.) Vertex labeling initO, is analogous
to initl,:

,,0(.= N.0,+1 v N.c,+i A V V [potential(t) A m.0) s > k
MUEN. tET.(m,n)

initO,(n) - r,)

N.O,+, V (N.c,+I A n.0) n E M,
I.N.0,+1 else

(12)
Finally, starting with N.c, = 1 for any storage node n, the analyzer computes formulas

for N.c,, w > s > 1 by solving the dual system [Indef,, initc,]D. This formula symbolically
encodes the predicate C,(n). The computation is formulated as a dual system to express
the absence of blocking paths. The edge labeling Indef, describes the conditions under
which two storage nodes are not connected by a transistor in the 1 state of strength greater

-. than or equal to a:

Indef (m, n) = Indef,+ (m, n) A A indefinite(t), (13)

where Indef(m, n) = 1. The vertex labeling initc, indicates the conditions under which a
storage node neither has size s, nor is the destination of a definite path of strength greater

4

Boolean Analysis of MOS Circuits 16

than s, nor is connected to an input node- by a transistor with state 1 and strength s:

N.c+l A A A indefinite(t) s > k3E)4., ter".(an)

initc, (n) = O n E, (14

N.c-,+1 else

To summarize, the computation of the steady state response formulas starts with s
w - 1 and works downward to a = 1. At each strength level the analyzer sets up and
solves equations to compute N.1. and N.0, for every node. It then sets up and solves
a dual system to compute N.c, for every node for use at the next lower strength level.
The desired results for node n equal N.11 and N.0 1, respectively. Although the above
presentation used names subscripted by s to represent the terms at different strength levels.
the implementation need only retain the terms for the current strength as it iterates.

5 Refinements

The analyzer as described so far achieves good asymptotic performance in terms of the size
of the formulas generated. However, the performance can be further improved by reducing
the constant of proportionality, by generating a hierarchical description, or by maximizing
the potential concurrency of the evaluation.

5.1 Nonessential Node Elimination

Until now, the presentation has assumed that the analyzer must compute the steady state
response for every node in a subnetwork, as is done by most switch-level simulators. How-
ever, some nodes serve only as interconnection points in a circuit-they neither control
any transistors nor form part of the circuit memory. For example, all intermediate nodes
in the pullup and pulldown networks of nMOS and CMOS logic gates serve only as inter-
connections. For modeling circuit behavior, a program such as a simulator need only keep
track of the states of "essential" nodes, i.e., those that can either directly or indirectly
affect the value of a subnetwork output.

Once the analyzer has generated the DAG for a subnetwork, a postprocessor can prune
it to include only those parts required to compute the states of essential nodes as follows.
The postprocessor starts by marking the DAG nodes representing all formulas N.A and
N.0 for which n is a primary output of the circuit or is the gate of an n-type or p-type
transistor. It then traces down the DAG and marks their descendants. If it encounters
a leaf representing variable m.l (respectively, m.0), and the DAG node representing the
formula M.l (respectively, M.O) has not been marked, then it marks this node and traces
the descendants. This process continues until it can reach no further DAG nodes. The
pruned DAG consists of those parts that have been marked.

Note that the degree of pruning depends on the degree to which the original formulas
have been simplified, because simplification will typically reduce the number of variables
occurring in a formula. Therefore, Boolean simplification tends to have a multiplicative

Boolean Analysis of MOS Circuits 17

effect-greater simplification reduces the size of the original DAG and also increases the
amount by which it can be pruned.

5.2 Hierarchical Analysis

The presentation has also assumed that the analyzer must extract the function of every
subnetwork in a circuit. However, most VLSI circuits contain repeated structures, and
therefore many isomorphic subnetworks. A more efficient method would analyze only
unique subnetworks. It would then produce a hierarchical representation in which each
subnetwork instance references the appropriate Boolean description with its own set of
node parameters. This hierarchical analysis would require less time and produce a more
compact description. Such an approach, however, requires a method to recognize isomor-
phic subnetworks.

A circuit described hierarchically already has much of the commonality represented
explicitly. Unfortunately, the hierarchical partitioning of the circuit will not, in general,
conform to the partitioning required for symbolic analysis. That is, the circuit elements
in a single channel-connected subnetwork may be declared in several components of the

". hierarchical description. To exploit this hierarchy, the analyzer must first modify the
circuit description to respect subnetwork boundaries. It can do this by "pulling" all node
and transistor specifications for each subnetwork up the hierarchy into the least common
ancestor of the components in which they originally occurred.

Alternatively, the analyzer can extract common subnetworks by applying graph iso-
morphism techniques. Although efficient and reliable algorithms for general graph iso-
morphism have not yet been developed, heuristic methods developed in the context of
interconnect verification have proved very successful [32,33]. Furthermore, if the analyzer
fails to recognize some isomorphisms, the output will not be as compact, but the results
will still be valid.

5.3 Maximizing Potential Parallelism
O

In the near future, preprocessors for switch-level networks will routinely generate code
*i for computers that support high degrees of parallelism. For example, the YSE can have

* :. up to 256 processors operating simultaneously and communicating through a cross-bar
switch. Under such conditions, it is more important for the preprocessor to reduce se-

0. quential constraints imposed by data dependencies rather than to minimize the formula
size. Reducing data dependencies also simplifies scheduling on highly pipelined processors.
As is mentioned in the companion paper, pivots can be chosen for Gaussian elimination
such that the analysis of an n node, general series-parallel network yields a set of formulas
with O(n) total operations and maximum depth O(log n). Thus, given sufficient parallel
resources, the steady state response for a subnetwork could be computed in sublinear time.
In contrast, the algorithms used by MOSSIM II and all other switch-level simulators can-
not achieve sublinear performance regardless of the processing capabilities. For example,
they would be effectively limited to sequential execution when propagating a signal down

a

Boolean Analysis of MOS Circuits 18

a long chain of transistors. Gaussian elimination removes this constraint by collecting
information about the entire chain and then redistributing the results, each time through
expression trees of logarithmic depth. Thus a preprocessor based on Gaussian elimination
becomes especially attractive for highly parallel systems.

6 Examples

This section highlights some characteristics of the analyzer by evaluating how the analysis
would proceed for several general MOS implementations of logic gates, and by executing
the algorithm on a small CMOS circuit. For circuits containing more than a handful of
transistors, it becomes impractical to trace the execution steps in detail, and the resulting
formulas are too large to examine manually. In studying these examples, the reader must
keep in mind that the true strength of the analyzer lies in its ability to handle much larger
circuits.

The presentation expresses performance by a parameter a, defined as the the total
number of binary Boolean operations in the formulas divided by the number of transis-
tors in the network being analyzed. Lower values of a ndicate a more efficient analysis.
Although this parameter only measures the size of the analyzer output, it also provides a
reasonable indication of the time required for execution. A worst case analysis shows that

ca cannot exceed 240 for circuits with at most 6 signal strengths where all subnetworks hav e
general series-parallel channel graphs [25]. This analysis, however, is far too pessimistic.
Experiments on actual circuits indicate a typical range of 2 to 10.

6.1 General Logic Gates

Figure 2 illustrates the switch-level representations of three classes of MOS logic gates.
In this figure the network N represents a pulldown network of n-type transistors. When
viewed as a two terminal network of switches with control variables a,,..., a/, the condi-
tions under which a path forms across the terminals is given by its transmission function
T(al,..., at). Similarly the network ND represents a pullup network of p-type transistors.
When viewed as a network of positive switches this network has a transmission function
TD(a1,..., a,) equal to the dual of T. That is, these two functions are related as

T(aj,...,a) = -TD(-a,.. -at).

Note also that T is the dual of TD. In most cases, N is a series-parallel network with ND

its dual. That is, parallel connections in N correspond to series connections in ND, and
vice-versa. However, these conditions are not mandatory-network duality is a sufficient,
but not necessary, condition for functional duality. The formula obtained by solving a
system of equations representing network N is equivalent to that obtained by solving a
dual system of equations representing network ND, and vice-versa.

A static nMOS gate consists of a pulldown network of n-type transistors connecting
the output to ground, and a weaker, depletion mode transistor connecting the output to

-- T-

* ~.2
pND

3i 23

N~NDN

2 p;ntp -type ic -tjs

ii3ii2i 3

* - Figure 2: Switch-level Representations of Logic Gates. The boxes indicate networks
of transistors labeled by strength and type. Transistors are labeled by their strength, and

'I. storage nodes by their size.

Boolean Analysis of MOS Circuits 20

a a.1 a.0 b b.1 b.0 Out.1 Out.0 Out
,..0 0 1 0 0 1 1 0 1

0 0 1 1 1 0 1 0 1
0 0 1 X 1 1 1 0 1
1 1 0 0 0 1 1 0 1
1 1 0 1 1 0 0 1 0
1 1 0 X 1 1 1 1 X
X 1 1 0 0 1 1 0 1
X 1 1 1 1 0 1 1 X
X 1 1 X 1 1 1 1 X

Table 1: Three-valued Behavior of NAND Gate. The formulas generated by the
analyzer predict the same behavior as conventional ternary logic.

power. The storage node sizes make no difference in the result and are set to 1 for the
example. The analysis of the steady state response at node out proceeds as follows:

Out-l3 = 0
Out.0s = T(ii.1,... , ik.1)
Out.c3 = TD(i.0,.... ,ih.0)

Out.12 = Out.c3 A 1 = TD(i.0, .. i,.0)
Out.02 = T(i.1,...,ik.)
OUt-C2 = 0

Out.11 = TD(ii.0,.. ., ik0)
Out.01 = T(ij.1,... .l)

giving Out.1 = TD(ij.0,...,i.0) and Out.0 = T(i.1,...,i.1). That is, the formula for
Out.0 would express the function T applied to variables i1 .1,...l, 4.1, while the formula for
Out.1, arising from the dual analysis of network N, would express the function TD applied
to i1.0,..., ik.O.

For example, a NAND gate with inputs a and b would have steady state response
- functions:fnisOut.1 = a.0 V b.0

Out.0 = a.1 A b.1

Evaluating these formulas for all possible values of the variables yields the functionality
shown in Table 6.1. As can be seen, these formulas capture the conventional ternary
extension of the NAND function. In general, the pairs of formulas for all nMOS logic
gates express a ternary behavior equal to the ternary extension of the corresponding gate
function [?1.

Boolean Analysis of MOS Circuits 21

Node out is always the destination of a definite path of strength 2, and hence the
*' stored charge of the nodes within N cannot affect its steady state response. Eliminating
. nonessential variables would then reduce the set of formulas to those expressing the steady

state response of out. For the case of a series-parallel network, and an analysis by Gaussian
" elimination with node out eliminated last, the size of the formula generated will equal the

number of transistors minus 1. This gives a performance measure a slightly less than 2.
Even for networks that are not strictly series-parallel, such as ones containing bridges, a
will not significantly exceed 2.

A static CMOS gate consists of a pulldown network of n-type transistors connecting
the output to ground and a pullup network of p-type transistors connecting the output to
power, where the two networks have dual transmission functions. Neither the transistor
strengths nor the storage node sizes affect the gate function. For the example they are set

* to 2 and 1, respectively. The analysis of the steady state response at node out proceeds
as follows:

Out.12 = TD(il.o,... ,ih.O)

Out.02 = T(ii.1,...,ik.1)
Out.c2 = T(ii.1,... , ih.1) A TD(il.0, ... , ik.O)

Out.11 = TD(i.0, - , i.O) V [x A Out.c2] - TD(il.O, . ik.O)

Out.0, = T(ii.1, . i.. ,i.i) V (y A Out.c2)1 = T(:.1, ... , :,.1)

where the terms z and y express the effects of the initial stored charge on nodes out and

those internal to N and ND. These terms are eliminated by absorption and hence are not
shown in detail. The steady state response is therefore identical to that obtained for an

equivalent nMOS gate even when some inputs equal X.
Unlike nMOS gates, there may be no definite driving path to out, and hence the paths

representing sources of stored charge to out may not be blocked. However, in all such cases
the gate output will equal X, and hence these paths have no effect. Unfortunately, the
analyzer may not recognize the possible absorption of terms representing sources of stored
charge by those representing driving paths. To do so, it must recognize that the formulas
generated during the normal analysis of N and ND are equivalent to those generated during
the dual analysis of ND and N, respectively. Using Gaussian elimination where node out
is eliminated last, and the formula manipulation techniques described in the companion
paper, these equivalences will be recognized for the most common case of N being series-
parallel and ND its dual. If these absorption conditions are recognized, then nonessential
variable elimination will reduce the set of formulas to those representing the steady state
response of out. Therefore, for series-parallel networks, the analyzer has a performance
with a slightly less than 1. On the other hand, it will not do as well for networks that are

* not series-parallel, nor where N and ND are not dual networks. Such cases are sufficiently
rare to have little impact on the overall performance.

A domino CMOS gate [29,301 consists of a p-type precharge transistor, a pulldown
network of n-type transistors, and an n-type discharge transistor that can connect the gate
cutput to ground through the pulldown network. Both the precharge and the discharge

*wo q If,.

i Boolean Analysis of OSCicts2

o S Circuits 22

transistors are gated by a common clock c. Transistor strengths do not affect the gate

function and are set to 3 for the example. However, when connected in domino fashion,
the output node must have greater capacitance than the internal nodes of N, because it
may share charge with them. Therefore node out has size 2 and the nodes internal to

_ . N have size 1. The analysis of the steady state response at node out would proceed as

follows:

Out.13 = c.O
Out.03 = T(ii.1,... ,i.1)Ac.1
Out.c3 = [TD(il.O... 4.O) V c.o] A c.1

= [TD(il.0,... , it.0) A c.1] V [c.1 A c.01

Out.12 = c.0 V [TD(il.o,.. , i.0) A c.1 A out.1] V [c.1 A c.O A out.1]
Out.02 = [T(ii.1, it.1) A c.1] V [TD(il.0,..., it.0) A c.1 A out.0] V [c.1 A c.O A out.O]

• Out.c2 = 0

Out.11 = c.0 V [TD(il.0,..., i.O) A c.1 A out.1 V [c.1 A c.0 A out.1]
Out.01 = [T(ti.1,... ,ik.1) A c.1] V [TD(il.0,..., ik.0) A c.1 A out.O] V [c.1 A c.0 A out.O]

giving final results

Out.1 = c.0 V jTD(il.O,.. . ,ik.O) A C.1 A out.l} V [c.1 A c.0 A out.11

Out.O = [T(ii.1,.. . ,it.1) A c.1] V [TD (i.0,... , it.0) A c.1 A out.O] V [c.1 A c.O A out.OJ

Once again the stored charge on the internal nodes of N will have no effect on the steady
state response of out, and hence the formulas for these node variables can be eliminated.

These formulas appear more complex than the previous ones, but in fact only require
seven binary operations beyond the number required to represent the formulas for T and
TD. Hence, for the series-parallel case, the analyzer has a performance with a slightly more
than 2. To better understand these formulas, consider the effect of a sequence in which the
clock c is first set to 0 and then to 1. The first setting would give a steady state response
Out.1 = I and Out.O = 0. Letting these be the values of out.1 and out.O, respectively,
the second setting would give a steady state response with Out.1 = TD(il.O,...,ik.0) and

Out.O = T(i 1 .1,...,ik.1). Hence, a domino gate has the same functionality as a static
gate, even when some inputs equal X. The same result occurs when simulating the gate

* in ternary model31}, with c set first to 0, then to X, and finally to 1. This indicates that
the gate is not sensitive to the rise time of the clock.

In summary, the analyzer performs very well for most logic gates, deriving formu-
las that correspond directly to the series-parallel structure of the pulldown and pullup
networks. Furthermore, even in subnetworks containing logic gates connected to more
complex circuitry through pass transistors, the gate functions will be extracted efficiently.
This performance should not seem extraordinary, given that logic gates form a particularly
simple class of MOS circuits. However, this performance far exceeds the exponential com-
plexity achieved by other general analysis methods. Having the general analysis algorithm

.. ..6l. . .1 .. . I I 1 I I

Boolean Analysis of MOS Circuits 23

."

c
a ~c2 I

-'.

I0

4.

o,.,""Figure 3: Example CMOS Circuit. Transistors are labeled by strength. All stor-
age nodes have size 1. Although rather contrived, this circuit demonstrates a variety of
interesting switch-level effects.

9 obtain efficient results for straightforward cases eliminates the need to devise specialized
code to handle these cases.

6.2 Circuit with Stored Charge

Figure 3 shows a small, but relatively complex circuit in terms of its set of possible be-
haviors. This example demonstrates such properties as complementary logic, bidirectional
pass transistors, stored charge, and ratio effects. It is not intended to demonstrate good
circuit design practice. The circuit contains a two input NAND gate with output q. The
gate output is connected by a p-type pass transistor to a node r which also has a "kill"
transistor to ground. The kill transistor has strength 3, indicating that it can override

, any value transmitted to r through the pass transistor. Furthermore, if both the kill and
pass transistors are turned on when the gate is driving toward 1, a fight will develop at q
giving X as its steady state response.

The steps in the analysis are too complex to show in detail. Executing them and
simplifying the formulas by hand yields the following results for node q:

Q.1 = a.o V b.0
Q.0 = a.lb.1 V c.0d.l.

For clarity, the A symbols have been removed in the above formulas, and parentheses

I

Boolean Analysis of MOS Circuits 249

R.o R.1

V V

,J.

d.

A

.O d.0

AV

A

c.0 d.1a.1 b. c.1 d.O a.0 b.o

Figure 4: DAG Representation of Example Circuit. The leaves denote variables
describing the initial state of the circuit, while the vertices denote Boolean operations.
The pointers labeled Q.1, Q.0, R.1, and R.O denote formulas for the new states of nodes

. q and r.

4

Boolean Analysis of MOS Circuits 25

have been omitted where possible with the convention that AND takes precedence over OR.
These formulas are simply those of a NAND gate with an additional term indicating the
conditions under which the kill and pass transistor can drive q toward 0.

For r the analyzer yields the formulas:

R.1 = d.o [c.1 r.1 V (a.0 V b.O)c.0 V (a.0 v b.O) a.1 b.1 r.l

R.o = d.1 v d.o [C.i1 r.0 V a.1 b.1 c.0 V (a.0 v b.O) a.1 b.1 r.01

These formulas appear quite complex, but each term can be recognized as describing a

specific contribution to the steady state response. Part of this complexity owes to the fact
that they describe the circuit behavior with some inputs equal to X as well as 0 and 1.
From these formulas one can determine the conditions leading to the three possible steady
state responses on r. The steady state will equal 0 for the following combinations of input
and state variables, where a dash indicates that the corresponding variable can equal 0, 1,
or X:

a b c dr

--- 1-

110
1 1 0- 0,.-.1 1 0

Similarly, it will equal 1 for the following combinations of input and state variables:

a b c d r

'' 0- 0 0
- 0 0 0-

0 - 0 1
..- 0 -0 -1

All other cases yield X.

Finally, the formulas for p are unimportant. Being an interconnect node within a logic
gate, this node is not essential.

V Figure 4 shows the DAG representation of the formulas for the steady state response
on nodes q and r. This DAG has 13 nodes, representing 18 binary operations, giving an

- a of 3. Thus, even a more complex structure in terms of its switch-level behavior has a
reasonably concise Boolean description. The size seems especially reasonable considering
that the formulas describe the circuit outputs for all 729 ternary combinations of the 4
input and 2 state variables, not just the 64 Boolean combinations.

7 Extensions

Some applications of the switch-level model require features beyond the basic behavioral
representation developed so far. Many of these extensions can be provided in straight-

ktt
Boolean Analysis of MOS Circuits 26

forward way by modifying the Boolean equations for the steady state response. The ease
with which these extensions are incorporated further demonstrates the strength of theI.. mathematical framework.

7.1 Fault Modeling

Switch-level fault simulators such as FMOSSIM [3,4] have proved very successful at real-
istically modeling a wide range of faults in MOS circuits. These programs can represent
the effects of faults such as nodes forced to ground or supply, as well as transistors stuck
open or closed without changing the basic logic model. Normally, the analyzer produces
formulas that cannot model these fault effects. Simply injecting faults into the formulas
would create faults for which there are no counterparts in the switch-level network as well
as overlook faults that could exist in the network. However, a modified analysis can pre-
serve the fault behavior of the circuit. This modified analysis requires only a small number
of additional algebraic operations (4 per transistor and 2 per node), although the resulting
formulas cannot be simplified as well.

The analyzer injects faults by introducing additional Boolan variables, where a vari-
able is set to 1 when the fault is present and to 0 otherwise. This "fault variable" approach
can describe fault effects by Boolean operations and hence apply the solution and manip-
ulation techniques already developed.

For each node n, fault variable n.o indicates whether the node acts as an input or a
storage node. As an input node, it is stuck at either 0, 1, or X depending on the values
of n.1 and n.0. The analyzer incorporates this variable into the analysis by redefining the
terms representing signals of input strength:

N.1, = n.o An.1,

N.O, = n.o A n.0,

N.c. = -'n.O.

The remainder of the analysis proceeds as before.
For each transistor t, variables t.o0 and t.ol indicate the conditions when the transistor

is stuck-open (nonconducting) or stuck-closed, respectively. Of course, a stuck-closed fault
on a d-type transistor has no effect and hence can be omitted. When a transistor is stuck-
closed, it is modeled at its nominal strength, although this can easily be generalized to
different strengths. The analyzer incorporates these variables into the analysis by simply
modifying the definitions for indefinite(t) and potential(t) as follows:

type indefinite(t) potential (t)
n-type (n.0 A -t.ol) V t.o0 (n.1 V t.ol) A --t.o0

p-type (n.1 A -t.ol) V t.oO (n.0V t.ol) A -'t.oO
d-type t.oO -t.oO

'.'."

Boolean Analysis of MOS Circuits 27

All other steps of the analysis remain unchanged.
The analyzer can model other classes of faults, such as a bridges and breaks in the wires.

by introducing additional fault variables. However, its efficiency degrades as the number
- of fault effects grows large, especially those effects that force a merging of subnetworks.

7.2 Restoring Logic

-: Conventionally, switch-level simulators ignore voltage degradations through pass transis-
tors caused by threshold effects. This can cause a significant class of design errors to
remain undetected. Many CMOS circuits, for example, are designed with the intention
that only signals equal to either the supply or ground voltage act as valid logic values. A
more conservative model would enforce this rule by yielding X when a 1 passes through

- .- an n-type or a 0 passes through a p-type transistor. In cases such as a transmission gate
where each signal also passes through a complementary transistor, a 1 or 0 should result.
The simulator MOSSIM 11 [34] optionally enforces such a rule. Yoeli and Brzozowski have
proposed a similar rule in their switch-level model [35].

We can incorporate this convention into the switch-level model by modifying the defi-
nition of a definite path and consequently the way the analyzer computes N.co. That is.,
a path p with Root(p) = n is definite if either n = 1 (respectively, 0) and no transistor in
Trans(p) has state X or is of n-type (resp., p-type). In other words, only fully restored
signals transmitted through fully conducting transistors can block weaker paths. Note
that we need not be concerned about definite paths originating at a node with state X,
because if such a path exists, and there is no definite stronger path, then the steady state
response will equal X anyhow.

The computation of N.co must compute the effects by sources of 1 and 0 separately
and combine the two results:

N.c,(n) = N.cl. A N.c0o,

where formula N.cl, (respectively, N.cO) describes the absence of a definite path to node
n originating at a node with state 1 (resp., 0) and having strength greater than or equal to

* s. the analyzer computes these two values by solving dual systems [Indef 1s, initclo)D and
[Indef 0o, initcO,]D. To formulate these dual systems, define indefinite 1 (t) and indefiniteO(t)
for transistor t as follows:

type indefinitel(t) indefiniteO(t)

n-type 1 n.O
p-type n.1 1
d-type 0 0

That is, indefinitel(t) (respectively, indefiniteO(t)) describes the cases where the transistor
cannot be part of a definite path originating at a node with state 1 (respectively, 0), where
1 indicates "always", and 0 indicates "never".

7- -. 7- 7- _-. , T, IT -7 7 T .: -W. 9 .

. Boolean Analysis of MOS Circuits 28

Edge labeling Indef 1, is defined as Indefl(m, n) 1 and for w > s > 1 as

Indeflo(m,n) =Indeflo+x(m,n) A A indefinitel(t).
tET.(an)

Vertex labeling inttclo is defined for storage node n and strength w > s > 1 as

r .cl,+ A A A [indefinite1(t) V m.0] s > k

initcl,(n) f .O n tT.,,

N.cl°+, else

with the convention that N.cl,, = 1. Observe how this fcrmula uses variables n.0 and m.0
to place restrictions on the root node state. If n.0 = 1, then node n cannot be the root of
a definite path p with state 1, and similarly for m.0.

Similarly, edge labeling Indef 0, is defined as Indef0,,(m,n) = 1, and for w > s > I as

Indefo,(m,n) = IndefO.+j(m,n) A A indefiniteO(t).
tET.(Mn)

Vertex labeling initcO, is defined as

N.cO,+, A A A [indefiniteO(t) v m.1] s > k

SinitcO, (n) n. 1 E. tET.(n) n E .

N.cO°+, else

with the convention that N.cO,. = 1.
This extension adds an extra system of equations at each level and hence results in

somewhat larger formulas. This seems a reasonable price to pay for detecting an additional
class of circuit design errors.

As an example, applying this modified analysis to the circuit of Figure 3 has no effect
* on node q, but for node r yields the formulas:

R.1 d.0 c.1 r.1 V (a.0 V b.0)c.0 V a.lb.1 r.1

R.O = d.1 V d.0[c.lr.0 V a.lb.Xc.O V a.lb.1r.0]

*. This reduces the cases for which r has steady state response 0 to the following:

a b c d r

1 0
0

That is, r will not be pulled to 0 when a = b = 1 and c = 0, unless r = 0 or d = 1.

Boolean Analysis of MOS Circuits 29

7.3 Charge Decay

During normal operation, most switch-level simulators assume that a node retains its
stored charge indefinitely. In actual circuits leakage currents cause stored charge to even-
tually decay to some indeterminate value. A simulator that does not model this decay will
fail to detect cases in which proper behavior depends on stored charge being maintained
beyond some reasonable time limit.

The simulator MOSSIM H has an optional mode in which charge is retained only for a
number of clock cycles specified by the user. Any storage node that remains unrefreshed
for this many cycles is set to X. Such an event does not in itself indicate a circuit design
error. However, any further operations that depend on this node state will yield more X
values, and hence invalid uses of stored charge can be detected. MOSSIM II implement-
this feature by tagging every node with the most recent refresh time, measured in clock
cycles. Due to subtleties caused by both charge sharing and by transistors in the X state.
it must use a rather complex algorithm to compute the effective refresh time of a node a!
it updates the state.

The capability provided by MOSSIM II cannot be described efficiently in terms of
Boolean operations, because every node state must specify both a logic value and an
integer refresh time. By adopting a somewhat less precise timing scheme, however, a
Boolean representation becomes more practical. In this scheme, the period over which tht-
circuit operates is divided into a series of "epochs". An epoch will typically have duratio-2
equal to half the maximum number of clock cycles for which stored charge may be assume:
valid. A flag is maintained for each storage node indicating whether the node is 'fresh
or "stale", i.e., whether or not it has been refreshed during the current epoch. This flag
updated every time the node state is recomputed. At the end of each epoch the states of
all stale nodes are set to X. At the same time, all nodes not currently connected to input
nodes are marked as stale for the start of the next epoch. With this scheme, the exact
charge retention time can range between just over one epoch to just under two, dependi ng

on the alignment between the refresh time and epoch boundaries. This degree of accuracy
suffices for most applications, because most designers set conservative limits on charge
retention time.

Developing a precise definition of the conditions under which a node is refreshed involves
several subtleties. Clearly, a node is refreshed whenever it is connected to an input node by
a set of transistors in the 1 state. Consider, however, the circuit shown in Figure 5 in which

o@ several storage nodes may share charge. In particular, node p has greater size than either
q or r, and hence the state of p can override those of q and r. In some circuit designs, such
as where p is high capacitance bus, the transistors may be operated in such a way that no
conducting path ever forms between an input node and either q or r. Such cases can be
handled with a convention that whenever nodes q or r share charge with p, they will be
marked as fresh if p is fresh and as stale otherwise. As a further subtlety, when transistors
in the X state are present, a node may or may not be refreshed depending whether or
not this transistor is actually conducting. Such cases can be handled with a convention
that a node should be marked as stale if its state may depend on that of some stale node

. Boolean Analysis of MOS Circuits

'- bbC

p q

2

1
a

Figure S Charge Sharing Circuit Example. Nodes q and r can obtain new 1i0KI
values by shanng charge with p

for some combination of conducting and nonconducting transistors To summarize thes
conventions precisely, a node should be marked as stale whenever it is the destination)t
an unblocked path originating at a stale node.

To express these conditions symbolically, the analyzer introduces a variabie ri ,
rvery storage node n. withvalue I indicating "stale" and 0 indicating "fresh- The ariah ,'
then generates a formula N * for each node specifying when it should be marked as sti,

* &s a function of the state and refresh variables associated with the nodes The anal /,.

generates these formulas in a manner similar to that used to generate the formulas V I trn,
N 0 Starting at strength s = k (the maximum storage node size). and working downward

to 1, it so)lves the system Conidtt.. asnat., to generate formulas .V . for each node n Th,-
d desired formula N * equals N *I The edge labeling Coniduct. has already been defined i.a

' quation 10 The vertex labeling tin., indicates the conditions under which each node
*ria% be the source of stale charge

j N * . N c.. n * n A,

II N . else.

witrh the convention that V o.- 0
The simulator utilizes these formulas an follows At the end of an ep-ch. the simulai,,r

makes two passes over the nodes The first pas sets the state of any node n for whi .

n * - I to X and also sets t - to I The second pan, evaluate. the formula N ,,
determine the new value of ., This second pams marks as freh only nodes to whit
all unblcked paths originate at input nodes As the simulator proceeds, every tirre ii
computes a new state for node n. it computes a new value of n e by evaluating the formula
NA

As an example, applying this analysis to the circuit of Figure S yields the foliowirhg

0

['£

REFERENCES 31

formulas:
P.* = a.Op.,

Q.* = a.Ob.lp.* V b.Oq.* v b.Oc.lr.*
R.* = a.Ob.1c.1p.* V b.Oc.lq.* V b.Or.* V c.Or.*.

Observe that p can be marked as stale only if it is already stale and a J 1. On the other
hand, q is marked as stale if it shares charge with a stale value on either p or r, or if it is

' isolated and already stale. Similar results hold for r.

8 Conclusion

*Transforming a switch-level network into an explicit functional representation has proved
-. a challenging task. Previous attempts yielded results that were too inefficient or too
". inaccurate for practical use. The solution presented here relies on three major ideas.
* First, systems of Boolean equations can describe switch-level networks. Second, Gaussian

eliunation can take advantage of the sparse structure of these systems and generally give
solutions of linear complexity. Finally, the DAG representation of a set of formulas can
exploit the sharing of common subexpressions to give a very compact result.

The analyzer has the potential to improve the efficiency of programs for a variety
of MOS circuit analysis tasks. It can incorporate a number of modeling extensions by
modifying or augmenting the system equations. The advantage of this approach to switch-
level modeling will increase as hardware becomes available that achieves high performancte
through greater degrees of specialization and concurrency.

References

I R E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems," IEEE'
d Trans. on Computers Vol. C-33, No. 2 (February, 1984) pp. 160-177.

2 C J Terman, Simulation Tools for Digital LSI Design, PhD Thesis, MIT Dept. Ele(
Eng. and Comp. Sci. (October, 1983).

3 M D Schuster, and R. E. Bryant, "Concurrent Fault Simulation of MOS Digital
Circuits", Advanced Research in VLSI, P. Penfield, Jr., ed., MIT (1984), pp. 160-177

4 R F. Bryant, and M. D. Schuster, "Performance Evaluation of FMOSSIM, a Con-
.urrent Switch-Level Fault Simulator", Und Design Automation Conf., ACM (1985).
pp 715 719

'-H 11 Chen. R G. Mathews, and J. A. Newkirk, "An Algorithm to Generate Tests
for MOS Circuits at the Switch-Level", Internationai Test Conf., IEEE (1985).

M M K Reddy. S M. Reddy, and P Agrawal, "Transistor Level Test Generation for
MOS Circuits", Utnd Design Automation Conf., ACM (1985) pp. 825--828.

REFERENCES 32

[7j R. E. Bryant, "Symbolic Verification of MOS Circuits," 1985 Chapel Hill Conf. on
VLSI, H. Fuchs, ed. Computer Science Press (1985), pp. 419--438.

[8] D. S. Reeves, and M. J. Irwin, "Functional Verification of Digital MOS Circuits",
*°.- IEEE International Conf. on Computer-Aided Design, (1986), pp. 496-499.

[9) E. Ulrich, and T. Baker, "The Concurrent Simulation of Nearly Identical Digital
Networks", IEEE Computer (April, 1974), pp. 39-44.

r101 M. M. Denneau, "The Yorktown Simulation Engine", 19th Design Automation Conf.,
ACM (1982), pp. 55-59.

S[111 Daisy Megalogician Product Description, Daisy Systems, 1984.

j[121 ZyCad LE-O01 and LE-O02 Product Description, ZyCad Corp., 1982.

[13) W. J. Dally and R. E. Bryant, "A Hardware Architecture for Switch-Level Simula-
tion", IEEE Trans. on Computer-Aided Design of Integrated Circuits, Vol. CAD-4,
No. 3 (July, 1985), pp. 239-249.

14] E. H. Frank, "Switch-Level Simulation of VLSI Using a Special-Purpose, Data-Driven
Computer", 22nd Design Automation Conf., ACM (1985) pp. 735-738.

" 151 G. Pfister, private communication, 1980.

161 Z. Barzilai, et al, "Simulating Pass Transistor Circuits Using Logic Simulation Ma-
chines", 19th Design Automation Conf., ACM (1983), pp. 157-163.

171 J. Hayes, "A Unified Switching Theory with Applications to VLSI Design", Proc.

IEEE, Vol. 70, No. 10 (October, 1982), pp. 1140-1151.

181 Z. Barzilai, et al, "SLS-a Fast Switch Level Simulator for Verification and Fault
Coverage Analysis", 23rd Design Automation Conf., ACM (1986), pp. 164-170.

191 E. Cerny, and J. Gecsei, "Simulation of MOS Circuits by Decision Diagrams", IEEE
Trans. on Computer-Aided Design of Integrated Circuits, Vol. CAD-4, No. 4 (October,
1985), pp. 685-693.

201 G. Ditlow, W. Donath, and A. Ruehii, "Logic Equations for MOSFET Circuits",
!nternational Symposium on Circuits and Systems, IEEE (1983), pp. 752-755.

'21j I. N. Hajj, and D. Saab, "Symbolic Logic Simulation of MOS Circuits", International
Symposium on Circuits and Systems, IEEE (1983).

22) C. A. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

231 M. R. Garey, and D. S. Johnson, Computers and Intractability, Freeman, 1979.

REFERENCES 33

[24] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits,
PhD Thesis, Univ. of California, Berkeley, Dept. of Elec. Eng., 1975.

[25] R. E. Bryant, Algorithmic Aspects of Symbolic Switch Network Analysis, companion
paper, 1987.

[26] C. Lutz, S. Rabin, C. Seitz, and D. Speck, "Design of the MOSAIC Element," Ad-

vanced Research in VLSI, P. Penfield, Jr., ed., MIT (1984), pp. 1-10.

[27] R. Byrd, G. D. Hachtel, and M. R. Lightner, Switch Level Simulation: Part I-Theory
and Algorithmic Frame, unpublished, 1985.

[28] M. Yoeli, and S. Rinon, "Application of Ternary Algebra to the Study of Static
Hazards," J.ACM, Vol. 11, No. 1 (January, 1964), pp. 84-97.

[29] L. A. Glasser, and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits,
Addison-Wesley, 1985.

[30] N. H. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley,
1985.

[31] R. E. Bryant, "Race Detection in MOS Circuits by Ternary Simulation", VLSI88, F.
Anceau and E. J. Aas, ed. North-Holland (1983), pp. 85-95.

[321 M. Takashima, et al, "Programs for Verifying Circuit Connectivity of MOS/LSI Mask
Artwork", 19nd Design Automation Conf., ACM (1982), pp. 544-550.

[331 C. Ebeling, and 0. Zajicek, "Validating VLSI Circuit Layout by Wirelist Compari-
son", IEEE International Conf. on Computer-Aided Design, (1982), pp. 172-173.

[34] R. E. Bryant, M. D. Schuster, and D. Whiting, MOSSIM II: A Switch-Level Simulator
for MOS LSI, User's Manual, Technical Report 5033, Dept. of Comp. Sci., Caltech
(1982).

[35] M. Yoeli, and J. A. Brzozowski, "A Mathematical Model of Digital CMOS Networks",
Canadian Conf. on VLSI (1985).

-a
°

r4.
I..,%31

/A2D

~~~.~~ ai-i- .- a Sw S S V S


